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Abstract

Peculiar velocity (i.e. inhomogeneity-driven deviation from idealized Hubble flow) leaves distinct
imprints on cosmological observations. Well known effects of peculiar velocity include the dipole
anisotropy in the cosmic microwave background (CMB), caused by the observer’s motion, and the
apparent flattening or elongation of structures in galaxy redshift surveys, caused by the velocities
of distant sources. Several attempts have been made to measure a dipole anisotropy in the matter
distribution and relate it to the CMB dipole, but results remain inconclusive.

In this master’s project, I build on a recently proposed technique for using Stage IV large-scale
structure (LSS) surveys, such as Euclid and the Square Kilometer Array (SKA), to infer observer’s
peculiar velocity. This technique, called the Finger-of-the-Observer (FOTO) effect, utilizes general re-
lativistic distortions arising from linear-order perturbations to Friedmann–Lemaitre–Robertson–Walker
(FLRW) cosmology. My work focuses on modelling higher-order multipoles of the FOTO signal,
assessing the feasibility of their detection, and estimating the additional constraining power they may
provide. In particular, I set-up an efficient pipeline to generate 125 mock skies using a sequence
of Einstein-Boltzmann solver, 𝑁-body initial condition generation, post-hoc application of linear
order relativistic distortions and baryon painting via survey functions. I show that, under full sky
assumption and using a wide redshift bin of a Euclid-like survey, FOTO effect can constrain observer
velocity up to ±16% relative errors. Commenting on the statistical information contained within these
mock skies, I describe how the multipole structure of the FOTO effect relates to signal-to-noise ratios,
shrinkage in Bayesian inference posteriors and data compression techniques. Finally, on the basis of
the underlying symmetries and the preceding statistical results, I argue that early truncations of the 1D
power-spectrum multipole expansion recover most of the constraining power otherwise obtained by
combining higher (more computationally demanding) multipole estimates.
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“I and this mystery, here we stand.”
— Leaves of Grass, Walt Whitman





CHAPTER 1

Introduction

1.1 Why Care about Peculiar Velocity?
An observer’s motion through the universe imprints itself on cosmological observations as well as
their theoretical interpretations. Therefore, this work is concerned with refining a recently proposed
technique (Elkhashab, Porciani and Bertacca, 2024) to measure the motion of an observer moving
with respect to the cosmic filaments and voids.

One of the essential insights underlying modern precision cosmology is the idea of an everywhere
isotropic universe. In such an idealized model of a universe, no spatial location is privileged and all
matter uniformly recedes from everything else, comoving along the Hubble flow of cosmic expansion.
The presence of structure implies that the universe deviates from the aforementioned ‘Cosmological
Principle’ because, on sufficiently small scales, points in space can be slightly denser or less dense
than their surroundings. The observed distortions in our redshift survey maps (discussed in §1.3)
establish that although distant galaxies and galaxy clusters primarily appear to be moving farther, there
is also another, more intricate, component of the velocity field tracing the grooves in gravitational
potential carved by the large scale structure. This deviation in motion is called the observer peculiar
velocity when referring to our solar system and, often, just peculiar velocity when the referent is
a distant galaxy. Both kinds of peculiar velocities are vitally connected to our understanding of
cosmic inhomogeneities and structure formation. The peculiar velocity of galaxies, by virtue of it
imparting a more noticeable distortion in our surveys, has received substantial attention (Hamilton,
1998). However, for reasons described in the following paragraphs, we argue that observer peculiar
velocity warrants further investigation into its nature and magnitude, especially in light of modern
observational capabilities unlocked by projects like Euclid (Euclid Collaboration et al., 2025) and
SKAO (Aharonian et al., 2013).

To more concretely understand the ‘vital connection’ between observer peculiar velocity and our
standard model of cosmology, consider the dipole anisotropy of the most important primordial relic of
the Hot Big Bang – Cosmic Microwave Background (CMB) radiation. By 1970, studies had already
shown that, in contrast to the ideal theoretical picture of a completely isotropic CMB, one half of
the sky appears to be hotter than the other half. The discovery of CMB was immediately followed
by several competing attempts to measure the dipole anisotropy and, thus, the ‘firsts’ are hard to
isolate but we suggest consulting Lineweaver (1996) for one chronological listing of early dipole
measurements.
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Chapter 1 Introduction

The allure of studying the CMB dipole was manifold. For instance, J. M. Stewart and Sciama (1967)
interpreted the dipole as a consequence of the motion within our super-cluster and studied it with an
interest in trying to validate Mach’s principle (Huggett, Hoefer and Read, 2024). Arguably, however,
one of the most consequential aspects of the kinematic dipole discovery was ironically its systematic
subtraction from the CMB maps, which revealed the rich oscillatory features corresponding to Baryon
Acoustic Oscillation (BAO). These oscillations in the CMB power spectrum, which ‘become visible’
only after accounting for the dipole correction, have strengthened our understanding of processes
occurring even before ‘the first light’. The dipole correction (i.e. Lorentz boosting to the rest frame
defined by an apparently isotropic CMB to cancel our peculiar velocity) is a crucial systematic that
appears in a vast majority of our cosmological parameter estimations involving the early universe.
Considering the ubiquitous nature of this correction, it would be a naturally lucrative problem to
acquire a reliable understanding of our motion through various measurement techniques independent
of the CMB.

Now, further consider the fact that the status of compatibility between our peculiar velocity
measurements using probes of the early universe (i.e. using CMB data from Planck Collaboration
et al. (2020)) and late universe (i.e. using LSS) is currently a shaky affair (Secrest et al., 2022). To
summarize the disagreements, we must begin with Ellis and Baldwin (1984) who proposed that if the
kinematic interpretation of the dipole is correct then there should also be a corresponding anisotropy
in the distribution of luminous sources in the sky. Although, in principle, the strength of this method
lies in its largely model independent prescription, in practice, observational subtleties have led to a
puzzling collection of claims. Based on the technique by Ellis and Baldwin (1984), some studies
(using radio continuum galaxies) indicate a good compatibility between the different peculiar velocity
measurements (Darling, 2022) while other analyses (utilizing infrared galaxies in CatWISE data
(Eisenhardt et al., 2020)) claim a 5𝜎 discrepancy (Singal, 2021; Dam, G. F. Lewis and Brewer, 2023).
The situation is further aggravated when we consider that for a 𝑣obs = 370 km/s, the dipole in the
number count across the sky would only be enhanced by 0.5% (Dam, G. F. Lewis and Brewer, 2023).
We have summarized a small selection of claims made about the magnitude of peculiar velocity on the
basis of late universe measurements in Fig. 1.1. In the context of the potential dependence of such
results on sky cuts, estimator bias, selection effects, etc., Elkhashab, Porciani and Bertacca (2024)
succinctly describe the situation in the following sentence – “A dipole anisotropy consistent with the
CMB one (Blake and Wall, 2002) and a signal discrepant both in amplitude and direction (Gibelyou
and Huterer, 2012) have been extracted from the same catalog".

In this work, we study a possible extension1 of a novel independent probe (using relativistic
distortions on the power spectrum) that can serve as a potential tie-breaker over the current scientific
disagreements. We acknowledge that, unlike Ellis and Baldwin (1984), our suggested measurement
methodology depends on the underlying cosmological model. But the compatibility of peculiar
velocity measurements between the early and late universe can serve as another addition in the long
list of achievements for ΛCDM. Furthermore, an incompatibility could constrain our search for
a theoretical alternative that accommodates this tension (a brief review of such models would be
presented in §3.3.1). Besides being a pressing necessity at this juncture, in the following sections I
hope to demonstrate that the proposed tie-breaker - Finger-of-the-Observer (FOTO) Effect (Elkhashab,

1 By ‘extending’, I mean extending the statistical estimators to higher-order multipoles (as opposed to the current state-of-
the-art which employs only the power spectra monopole) in order to extract more information about our peculiar velocity
from the survey data. These details become clearer in Chapter 2.
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1.2 Historical Developments

Figure 1.1: Comparing a selection of claims in literature about observer peculiar velocity as inferred from a late
universe dipole. We see that while some measurements are in general agreement with the CMB measurement
(vertical dashed line), other can display a tension up to 4.9𝜎. Measurements and errors are reported from
Darling (2022), Dam, G. F. Lewis and Brewer (2023), P. d. S. Ferreira and Marra (2024), Mittal, Oayda and
G. F. Lewis (2023), Tiwari et al. (2024) and Planck Collaboration et al. (2020). Also see Fig. 1 of P. d. S. Ferreira
and Marra (2024) for a comparison between a different set of late universe dipole measurements.

Porciani and Bertacca, 2024) - is also a fascinating aspect of perturbative cosmology.

1.2 Historical Developments

Constructing the theoretical scaffolding to describe the nature of the Finger-of-the-Observer (FOTO)
signal and to generate forecasts for upcoming surveys requires the careful assembly of several results
from the perturbative, general relativistic treatment of cosmological large-scale structure (Challinor
and A. Lewis, 2011; Jeong, Schmidt and Hirata, 2012). Considering the chain of mathematical
reasoning that the remainder of this chapter is dedicated to, it is appropriate to contextualize these
theoretical results with some landmark developments that have enabled much of the science contained
within this thesis.

The conceptual origins of large-scale structure cosmology can be traced back to the early devel-
opments in GR around 1920. Einstein initially rejected the idea that the universe of matter might
be a limited island in asymptotically flat space because such a cosmology conflicted with Mach’s
Principle (Peebles, 2022). The conflict arises because Einstein believed that, in such a configuration, a
star could travel arbitrarily far from the ‘island universe’ while retaining its inertial properties2. At

2 The question regarding the stability of ‘finite matter islands’ situated in infinite space has been discussed much before
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first, Einstein toyed with solutions to this conflict with line elements that become singular outside the
realm of matter but was soon drawn to the more elegant solution of a homogeneous closed universe.
Hence, strikingly, the idea of grounding cosmology in homogeneity predates even the discovery of
other galaxies. Once this insight crystallized, discussions of homogeneous solutions to the Einstein
field equations with varying matter contents entered the scientific zeitgeist.

1.2.1 Analyzing Anisotropies

One of the earliest scientific efforts towards analyzing the dipole anisotropy on the celestial sphere was
made by James Bradley in 1728, when he observed and partially explained something conceptually
similar to the Finger-of-the-Observer Effect. Bradley had observed a ‘wobbling’ of stellar positions
and he correctly identified it as our own velocity painting the sky with a dipole (Bradley, 1728).

Bradley was trying to detect the parallax in 𝛾-Draconis but did not find the expected helical motion
around the true position. Theoretically, the star should have been at its lowest point in December
and the highest in June but, instead, the maxima and minima were achieved in March and September
respectively. He hypothesized that the deviation from the timetable arose because, besides the expected
parallax effect, there was an additional contribution to the motion of the star. The phenomenon that
Bradley had discovered is called aberration (Kovalevsky, 2003) i.e. an apparent motion displayed by
a celestial object around its true position. The modern ideas of relativistic beaming and light time
corrections are related to aberration but it is notably distinct from the effects of parallax.

Even in 1727, with barely a hundred years of decent astrometric observations, Bradley could
explain this aberration in terms of the finite speed of light through a series of highly intricate (and
interesting) arguments (Bradley, 1728)3,4. Beyond providing an explanatory model, Bradley also used
his observations to measure the speed of light. However, these observations were incompatible with
the 18th century theories of light and became a motivation for aether drag ideas which were later
developed by people like Fresnel and Stokes in the 19th century (Schaffner, 1972).

Moving ahead two centuries from the time of Bradley, through the developments in general relativity,
cosmology and non-galactic astrophysics, we arrive at the ‘cosmology on null cone’ proposal by
Kristian and Sachs (1966). They present their work on matter inhomogeneities with a modest
introduction claiming that nothing that is not implicit in the literature is introduced in assembling their
conceptual framework and that they are only ‘applying these results to a specific problem’. According
to them, the three ‘results of note’ from their paper (Kristian and Sachs, 1966) were that

1. All cosmological models (GR or not) satisfy a relation between infinitesimal area elements and
solid angles, i.e. 𝑑𝐴 = 𝑟

2
𝑑Ω, where 𝑟 is the corrected luminosity distance5.

2. Knowledge over only one side of the universe should be taken very cautiously and it is the
variation of effects on the celestial sphere which give decisive information.

Einstein and Mach. I do not intend to suggest that homogeneous cosmologies were Einstein’s original invention. Consult
Chapter IX of Schlick (2007) for a more insightful summary.

3 The (probably apocryphal) story says that he got this breakthrough insight on noticing that people who are walking in the
rain need to hold their umbrellas at an angle corresponding to their pace.

4 Interestingly, this discovery by Bradley was published in the Royal Society’s Philosophical Transactions, which is
considered to be the first and, as of now, the oldest-running scientific journal.

5 In a personal correspondence with Sachs, Penrose provided another independent proof of this
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3. There is a distortion effect which squashes distant spherical objects into ellipses on the
photographic plates and this can be measured.

In 1987, Kaiser investigated these ‘squashing’ distortions further (arising due to coherent inflow
velocities within large structures) and studied the presence of a quadrupole6 in the Shapley-Ames
catalog (Kaiser, 1987). Soon after this landmark paper, Hamilton (1998) gave Kaiser’s results (more
specifically, the result in the regime of smaller virialized structures) a much more evocative name,
calling the radial stalactite-like patterns ‘Fingers of God’. It is as a play on (and an ode to) this iconic
‘Finger of God Effect’, that Elkhashab, Porciani and Bertacca (2024) call the effect arising from our
peculiar velocity ‘Finger-of-the-Observer’ effect. Admittedly, the FOTO signal in redshift survey
maps does not particularly resemble fingers in appearance (see §2.1.1). Nevertheless, it remains a
fitting name as it corresponds to a metaphorical fingerprint of our motion on the apparent matter
distribution in the sky.

1.2.2 Simulations and Surveys

These conceptual seeds along with several others, over time, led to a dramatic increase in our
observational and computational cosmology capabilities. A landmark paper by Davis et al. (1985)
introduced one of the first ‘large’ n-body simulations of structure formation in our universe 7. Though
groundbreaking for its time with 643 grid cells and roughly 30,000 particles, it was orders of magnitude
coarser than today’s flagship simulations (such as FLAMINGO (Schaye et al., 2023)), which feature
gigaparsec boxes and upwards of 1011 particles.

Observationally, the improvement in our maps of galaxy distribution has been equally dramatic.
For instance, one of the first maps of the LSS was the iconic image by Lapparent, Geller and Huchra
(1986) that consisted of 1100 galaxies measured across 700 square degrees of the sky. In comparison,
a current generation survey like DESI (DESI Collaboration et al., 2016) can contain up to 30 million
objects and map over 15,000 square degrees8. Our mapping capabilities have grown so tremendously
that the very discipline has been reshaped. Yet, despite this progress, from one perspective, our
cosmic maps might still resemble the early paradigm-establishing cartographic efforts of Herodotus
and Ptolemy. The current data, while revealing many answers, invariably underscores the vastness of
what remains unknown. Hence, the pursuit of refinement, cross-validation, and theoretical deepening
continues.

The study of the large scale web-like structure of the visible universe has proven itself to be a highly
promising discipline, revealing connections to dark energy (Schimd, 2009), primordial non-Gaussianity
(Desjacques and Seljak, 2010), modified gravity (Clifton, P. G. Ferreira et al., 2012) and more. One
particularly promising probe to study this large scale structure and constrain cosmological parameters,
is a collection of effects termed Redshift Space Distortions (Hamilton, 1998), which I shall now
discuss in some detail.

6 We will return to the power spectrum quadrupole when we discuss multipole expansions in §2.1.1.
7 Although even earlier attempts had been made to perform analog calculations of particles moving only under the influence

of gravity using light bulbs by Holmberg (1941), leveraging the fact that both gravity and light-flux follow an inverse
squared distance relation

8 In a public interview titled The forest was full of cities we couldn’t see, Mesoamerican archaeologist Fransisco Estrada-
Belli, describing the LIDAR mapping of ancient Tikal, said “In five minutes, we discovered more sites than in my entire
career.” A similar sentiment aptly captures the scale of modern redshift surveys.

5
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Chapter 1 Introduction

(a) (b)

(c) (d)

Figure 1.2: Wedges from early and modern surveys illustrating filaments and voids in the large scale matter
distribution: (a) Center for Astrophysics (CfA) Survey (Lapparent, Geller and Huchra, 1986); (b) 2 degree Field
Galaxy Redshift Survey (2dFGRS) (Cole et al., 1998); (c) Sloan Digital Sky Survey (SDSS)(Gott III et al.,
2005); (d) Dark Energy Spectroscopic Instrument (DESI) Survey (with inverted colors) (DESI Collaboration
et al., 2016).

1.3 General Relativistic Redshift Space Distortions

The only relevant direct measurements accessible while mapping the large scale structure are the
sky position and redshift of the tracer galaxies. The choice of cosmological model determines a
distance-redshift relationship, allowing us to convert coordinates in redshift space (acquired directly
through the survey) to real-space coordinates (and vice-versa). Since the coordinate conversion is
dependent on the choice of cosmology, we obtain different redshift space maps for ideal FLRW and
perturbed FLRW, even if we apply the mappings to the same underlying real-space structures. Current
cosmological surveys can be sensitive to these differences caused by metric perturbations (Elkhashab,
Bertacca et al., 2024) and, hence, our conversions between real-space and redshift space quantities

6
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should be based on the relations derived using the perturbed FLRW cosmology. When we derive these
relations later in this section, it would be helpful to remember the key move that is being made – we
are transforming real-space coordinates into the observed over-density fields, by tracing how photon
trajectories and volume elements are distorted in slightly curved, expanding spacetime.

This section sets the stage by introducing the general formalism that underpins our approach and the
following section §1.4 will then focus on disentangling the specific imprint of the FOTO effect from
the broader tapestry of redshift-space distortions. In §1.3.1, I lay out a schematic which illustrates the
sequence of steps, at a glance, that we need to take in order to accomplish the ‘key move’. Then, §1.3.2
will present the actual mathematical steps described in the schematic map. Lastly, before isolating the
FOTO signal, we briefly interpret the various terms appearing in our final result9.

1.3.1 A Schematic of the Derivation
At a conceptual level, the task of transforming from real-space positions to redshift space overdensities
can be broadly stated as a sequence of three moves. First, we establish how the redshift and sky
position of every photon is shifted due to metric perturbation; this gives us a coordinate map from
real-space to what the survey measures. Second, we describe how the map deforms volumes and solid
angles. Third, we trace the impact of the deformed volumes on the survey’s selection function (via
magnification and evolution biases). These three central pieces give all the terms required to assemble
the FOTO signal (as we will do in §1.3.3).

For organizing the algebra, one convenient heuristic is to expand these three fundamental ideas into
the following seven concrete stages.

1. Declaring Gauge and Notation
a) Describe scalar-restricted synchronous comoving gauge and the Poisson gauge,

b) Adopt the ‘Cosmic Rulers Prescription’, which relates real-space coordinates with redshift-
space counterparts,

c) Define differential operators along line-of-sight ∇∥ and transverse ∇⊥ directions.

2. Asserting the Conservation of Galaxy Number Counts, which will serve as the fundamental
link between real and redshift space.

3. Using the Geodesic Vector to find the form of coordinate shifts:

a) The time component of the real-space geodesic vector yields a frequency shift 𝛿 𝑓 ,

b) The spatial component yields a shift in direction 𝛿𝑛
i,

c) These quantities are calculated by solving the geodesic equation to first order in Steps 4
and 5.

4. Computing the Redshift Perturbation 𝛿𝑧 (or, equivalently, scale factor perturbation 𝛿 ln 𝑎)

a) Including the classic Doppler term (i.e., the Kaiser piece),

b) Local gravitational potential terms,
9 Standard derivations from cosmological perturbation theory about structure growth, the kinds one would expect to

encounter in a graduate level advanced course on the topic, have not been recapitulated in the interest of brevity. Detailed
discussions on all such topics can be found in the textbook by Peebles (2020).
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Figure 1.3: Visualizing impact of linear-order general-relativistic redshift-space distortions (GRRSD).
Simulated large-scale matter distribution on an observer light-cone shown within an equatorial slice
(𝑧 ∈ [−250, 250] ℎ−1Mpc) and with a Gaussian smoothing kernel (𝜎 = 1.8px). Top Left: Dark matter
overdensities as represented in their real-space positions. Top Right: Same filaments and voids after includ-
ing GR-RSD in heliocentric frame. Bottom Left: The difference between real-space overdensities and the
overdensities represented in redshift space for an observer in the CMB frame. Here, one can see large-scale
concentric compression (Kaiser effect). Bottom Right: The difference between overdensities in redshift space
for CMB and heliocentric frames. The most noticeable effect is the dipole in the overdensities induced by the
observer velocity. While these features are already suggestive, the full cosmological information encoded in
these distortions can only be harvested with the systematic modeling and estimators described later in this thesis.
See §2.2.2 for details of the LIGER method used to generate these mock observations.

8
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c) Integrated Sachs-Wolfe (ISW) contributions.

5. Computing the Coordinate Maps Δ𝑥𝜇

a) The temporal shift Δ𝑥0 uses contributions from Step 4,

b) The spatial shift Δ𝑥i derives from the deflection 𝛿𝑛
i in Step 3.

6. Computing the Volume Distortion (Jacobian Terms)
a) Compute the metric determinant to linear order and the volume Jacobian deformation,

b) Express the change in volume Δ𝑉 in terms of lensing convergence 𝜅.

7. Calculating the new Bias Terms (apart from linear bias) using number density perturbation

a) The magnification bias Q(𝑧) accounts for sources made visible by lensing-induced flux
magnification,

b) The evolution bias E(𝑧) captures deviations from a static luminosity function across
redshift.

Once we go through these seven steps, we can assemble all the required pieces in §1.3.3 and also
recover the well-known Kaiser term in the non-relativistic limit. Finally, then, we would be in a
position to isolate the effects of observer peculiar velocity on overdensity maps in the redshift space.

1.3.2 Relativistic Effects, Step by Step
Now, we will fill the above-described schematic with the complete mathematical details and, at certain
points, note some features of interest.

1. Gauge and Notation follows, mostly, Bertacca (2015):
To bridge the theoretical nature of the FOTO signal with the forecasts of potential observables,
we invariably require simulations which can forward model ‘mock skies’ (discussed in §2.2).
One way to simulate the relativistic distortions on the large-scale structure would be to run
a numerical relativity program which is meant to solve a highly non-linear, strongly coupled
set of partial differential equations (called the Einstein Field Equations) corresponding to our
cosmological model (Adamek et al., 2013; Adamek et al., 2016). This is possible but it is
a very involved, expensive and delicate technique. The alternative strategy, applicable for a
system which deviates only slightly from an otherwise highly symmetric and idealized model,
would be to expand all the relevant quantities as a power series and to solve for the first order
perturbations to the necessary equations. This is the strategy adopted in the LIGER method10

(Borzyszkowski, Bertacca and Porciani, 2017) and it considerably reduces the computational
demands while forward modeling the relativistic effects. The gain in computational efficiency
is afforded at the cost of being applicable only to the first order statistics. But, when we discuss
the results in greater detail, we will show that interesting observables become accessible already
at the level of first order perturbations (Elkhashab, Porciani and Bertacca, 2021; Borzyszkowski,
Bertacca and Porciani, 2017).
There is, however, one issue that is ubiquitous among such perturbative treatments in physics

10 This will be described in greater detail in §2.2.2.
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— perturbations do not ‘really’ exist out there in our universe. Nature provides us with some
distribution of physical quantities (like density or temperature) but she does not explicitly
label or demarcate how much of the measured quantity should have been there as opposed
to how much of it is the deviation from the ideal situation. In other words, when we order
effects in a perturbative expansion, we introduce redundant structure in our theory and the
underlying physics should remain invariant to the choice of this additional structure11. In
practice, this means that there are some variables in our formalism which we have freedom to
choose (Clifton, Gallagher et al., 2020) . More specifically, in our case, the choice of foliating
the four-dimensional Riemannian manifold with three-dimensional hypersurfaces is the arbitrary
structure that we introduce12. Such a ‘slicing’ of our cosmic history is one manifestation of a
more general procedure called ‘Gauge Fixing’.
As mentioned earlier, this choice can be made arbitrarily as per our convenience (Clifton,
Gallagher et al., 2020) and it should not affect any physical observables. In our case, there are
two distinct ‘conveniences’ that can be achieved by two different gauge choices. In Synchronous
Comoving Gauge (SC) (Bruni et al., 2014; Bartolo et al., 2010), the Hubble flow vanishes because
the coordinate grid co-moves with the matter. This makes it computationally convenient and
gives a direct definition of the local bias using a ‘peak background-split’ approach i.e. 𝛿g = 𝑏 𝛿SC
. On the other hand, Conformal Newtonian Gauge gives clear and intuitive interpretations to
certain variables. The FOTO signal, like other measurable quantities, is gauge invariant and we
can use either of the gauges to perform our calculations. It is a common practice in cosmological
perturbation theory to use multiple gauges depending on the aspect of the problem being solved
(Ma and Bertschinger, 1994). We can do the same once we establish how quantities in the
two gauge choices are related to each other. Similar treatments have also been performed in
longitudinal gauge (Green and Wald, 2012) and in completely gauge-invariant ways too.
First we begin by connecting the Newtonian quantities to the SC gauge. Later, we will relate the
SC gauge to Conformal Newtonian Gauge. For natural units, a metric element can be written in
the SC gauge as

𝑑𝑠
2
= 𝑎

2(𝜏)
[
−𝑑𝜏2

𝛾ij 𝑑𝑥
i
𝑑𝑥

j
]

(1.1)

where 𝑎 is the scale factor, 𝜏 is the conformal time and 𝛾ij is the spatial metric. We also assume
irrotational dust flow with fundamental observers possessing four-velocity 𝑢𝜇 = [−𝑎, 0, 0, 0]
(i.e. the unperturbed geodesics are aligned with the world-lines of our ‘fundamental’ observers
and the cosmic time coincides with the proper time of fluid elements).
Next, we define the deformation tensor which contains information about volume expansion.

D 𝜇
𝜈 ≡ 𝑎𝑢

𝜇
;𝜈 −H𝛿

𝐾𝜇
𝜈 (1.2)

where the semicolon denotes the covariant derivative, H = 𝑎
′/𝑎 with primes denoting conformal

time derivatives (i.e. equivalent to saying H = 𝑎𝐻) and 𝛿 is the density contrast. The trace
D and traceless D𝑇𝑆𝜇

𝜈 components of the deformation tensor corresponds to inhomogeneous

11 Gomes (2025) is a concise distillation of Henrique Gomes’ decade long effort of carefully investigating important
philosophical considerations surrounding gauge freedom and gauge fixing — concepts that permeate our modern scientific
worldview, from cosmology to conformal field theories.

12 This is done by selecting an appropriate lapse function and a shift vector, which describe how points on one 3D
hypersurface get mapped to the next adjacent hypersurface.

10



1.3 General Relativistic Redshift Space Distortions

and anisotropic parts of the volume expansion. In our case, since the deformation tensor is
purely spatial, we can substitute the Greek indices with the Latin ones and relate them to the
components of the spatial metric

D i
j =

1
2
𝛾
𝑖𝑘
𝛾
′
𝑘 𝑗 . (1.3)

Following standard textbook prescriptions, we get the relativistic energy conservation equation
in SC gauge as

𝛿
′
SC + (1 + 𝛿SC)D = 0 (1.4)

and an evolution equation for the trace of the deformation tensor

D2 + HD + Di
jD

j
i +

3
2
H2

Ωm𝛿𝑁 = 0 (1.5)

where the subscript N depicts that the quantity is expressed in Newtonian gauge. Next, we
linearize the spatial metric

𝛾ij = (1 − 2𝜁) 𝛿𝐾ij +
(
𝜕j𝜕j − 𝛿

𝐾
ij ∇

2
)
𝜒 (1.6)

by writing it in terms of the two scalar potentials 𝜁 and 𝜒. The metric degrees of freedom
are summarized by two scalar quantities here because we are ignoring the vector and tensors
degrees of freedom as they remain linearly independent at the first order of perturbations. These
scalar potentials in SC gauge are related to the two gauge invariant Bardeen potentials (Bardeen,
1980)

Φ𝐵 = −1
2

(
𝜒
′′ −H 𝜒

′)
, (1.7)

Ψ𝐵 = 𝜁 + 1
6
∇2 + 1

2
H 𝜒 (1.8)

where Φ can be directly interpreted as the Newtonian-like gravitational potential and Ψ which
matches Φ for vanishing anisotropic stress (i.e. no neutrino shear). Since the Bardeen potential
Φ acts like the Newtonian gravitational potential, it can be computed with a Poisson-like
equation sourced from matter overdensity

∇2
Φ𝐵 =

3
2
H2

Ωm𝛿SC (1.9)

which allows us to match the relativistic and Newtonian prescriptions. For instance, consider
the Newtonian equations corresponding to a perturbed cosmological fluid

𝜕𝛿𝑁

𝜕𝜏
+ ∇.

[
(1 + 𝛿𝑁 )𝒗

]
= 0, (1.10)

𝜕 (∇.𝒗)
𝜕𝜏

+ H∇.𝒗 + ∇.(𝑣.∇)𝒗 + 3
2
H2

Ωm𝛿𝑁 = 0, (1.11)

3
2
H2

Ωm𝛿𝑁 = ∇2
𝜑. (1.12)

To match the SC gauge, we rewrite the Newtonian equations in Lagrangian coordinates using
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Chapter 1 Introduction

the substitution
𝑑

𝑑𝜏
=

𝜕

𝜕𝜏
+ 𝒗.∇ (1.13)

which gives us

𝜕𝛿𝑁

𝜕𝜏
+ (𝑧 + 𝛿𝑁 )D𝑁 = 0, (1.14)

𝜕D𝑁

𝜕𝜏
+ HD𝑁 + D i

𝑁 𝑗D
j
𝑁𝑖

+ 3
2
H2

Ωm𝛿𝑁 = 0 (1.15)

where we have also defined D i
𝑁 𝑗 = 𝜕

i
𝜕 j𝜙 with 𝜙 being the scalar potential. With this, we

now have a clear dictionary to translate the Newtonian quantities to the relativistic linear order
formalism in SC gauge. This is given by

1
𝑑𝜏

−→ 𝜕

𝜕𝜏
(1.16)

𝛿𝑁 −→ 𝛿SC (1.17)

𝜕
i
𝑣j −→ Di

j (1.18)

𝜙 −→ Φ𝐵. (1.19)

We needed such a dictionary to use the dual-gauge approach because, in SC gauge, the potential
computed via the Poisson equation does not correspond to the perturbative metric scalar degree
of freedom. Secondly, the simulation peculiar velocities are not matched to the relativistic
peculiar velocities (because the latter vanishes, by construction, in SC gauge). However, there is
one gauge choice that allows us to have the ‘best of both worlds’ with one single gauge choice.
This is called the scalar-restricted Poisson gauge (also called conformal Newtonian gauge)
(Chisari and Zaldarriaga, 2011), given by

𝑑𝑠
2
= 𝑎

2(𝜏)
[
(1 + 𝜓)𝑑𝜏2 + (1 + 𝜙)𝛿𝐾ij 𝑑𝑥

i
𝑑𝑥

j
]
. (1.20)

Poisson gauge solves both problems with the SC gauge because the metric potentials directly
coincide with Bardeen potentials and the peculiar velocities match the Newtonian peculiar
velocities (assuming no velocity bias (Chisari and Zaldarriaga, 2011)). However, in this gauge
the peak-background split approach (Jeong, Schmidt and Hirata, 2012) can no longer be applied.
Thus, the linear bias is accounted for by the following transformation (Challinor and A. Lewis,
2011; Jeong, Schmidt and Hirata, 2012)

𝛿𝑔,𝑃 = 𝑏 𝛿SC + (3 − E) H Φ𝑣 . (1.21)

where Φ𝑣 is the linear velocity potential and 𝛿SC is the dark matter overdensity in synchronous-
comoving gauge.
Another helpful choice of convention for this derivation is to adopt the ‘Cosmic Rulers
Prescription’ (Schmidt and Jeong, 2012), which allows us to relate physical coordinates with
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1.3 General Relativistic Redshift Space Distortions

redshift space counterparts perturbatively. If we define 𝒏 ≡ 𝒙/𝑥 as the observed direction, then
we describe the null geodesic of a photon 𝑥

𝜇 in redshift space with following coordinate frame
(for a spatially flat universe)

𝑥
𝜇
=

(
𝑐𝜂0 − 𝑥, 𝑥𝒏

)
(1.22)

where 𝜂0 = 𝜂 + 𝑥/𝑐 is the present day value of the conformal time 𝜂. Note, that 𝑥 here is
computed using the background universe (i.e. ideal FLRW without perturbations)

𝑥(𝑧) =
∫ 𝑧

0

𝑐𝑑𝑧
′

𝐻 (𝑧′)
. (1.23)

The inner product for these coordinates can be computed using FLRW written in the conformal
coordinates

𝑑𝑠
2
= 𝑎

2(𝜂)
[
−𝑐2

𝑑𝜂
2 + 𝛿

𝐾
ij 𝑑𝑥

i
𝑑𝑥

j
]
. (1.24)

Before computing the coordinate shifts which relate the physical coordinates to their redshift
counterparts i.e. the Δ𝑥𝜇 in

𝑥
𝜇
r

(
𝑥r

)
= 𝑥

𝜇 (𝑥) + Δ𝑥
𝜇 (𝑥), (1.25)

we define some notation that will simplify later expressions. For a vector A, we can define its
parallel and orthogonal components as

𝒏.𝑨 = 𝑛i𝐴
i
= 𝐴∥ , 𝐴i

⊥ = 𝐴
i − 𝑛

i
𝐴∥ . (1.26)

The same can be extended to the gradient operators

𝜕

𝜕𝑥
i = 𝜕i, (1.27)

𝒏.∇ = 𝑛
i
𝜕i = 𝜕∥ , (1.28)

𝜕⊥,i = 𝜕i − 𝑛
i
𝜕⊥, (1.29)

∇
2
⊥ = 𝜕⊥,𝑖𝜕

i
⊥ = 𝛿

𝐾𝑖 𝑗
𝜕i𝜕j − 𝜕

2
∥ −

2
𝑥
𝜕∥ . (1.30)

Finally, the affine parameter adopted for all calculations is the redshift space comoving distance
𝑥. Consequently, the total derivatives for any quantity would be

𝑑

𝑑𝑥
=
−1
𝑐

𝜕

𝜕𝜂
+ 𝒏.∇ =

−1
𝑐

𝜕

𝜕𝜂
+ 𝜕∥ (1.31)

2. Asserting Galaxy Number Conservation
In the previous step, we largely established the conventions that our formalism follows. The first
‘real’ step in deriving the relativistic distortions is to assert the conservation of the number of
galaxies. More formally, we can describe the physical number of galaxies of some population
in a given volume V as

N =

∫
V
𝑎

3
r

(
𝑥

0
r

)
𝑛g

(
𝑥
𝜇
r , 𝐹r

)
𝑑Vr (1.32)
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Chapter 1 Introduction

where 𝑛g is the physical number density, 𝑎r is the real-space scale factor, 𝐹r is the flux and
and 𝑥

𝜇
r are the physical comoving coordinates. The same N can be equated to the number

of galaxies in the redshift space for some flux-limited survey with only those which have an
observed flux greater than the survey flux limit (i.e. 𝐹r > 𝐹lim ). The number of galaxies, then,
by construction becomes

N =

∫
V
𝑎

3
r

(
𝑥

0
)
𝑛g

(
𝑥
𝜇
, 𝐹 > 𝐹lim

)
𝑑V (1.33)

where the scale factor, coordinates, flux and volume element are not written in redshift space
(thus, without the subscript 𝑟 which represented ‘real-space’). In the redshift space, 𝑥𝜇 are the
observed coordinates and the scale factor is 𝑎 = (1 + 𝑧obs)

−1.
With the conservation of galaxy number as our guiding constraint, the next step is to determine
how the trajectories of photons are altered by perturbations to the background geometry. These
null geodesics form the fundamental channels which convey information about both redshift
and positional distortions. Thus, solving the perturbed photon geodesic equation is the next key
step.

3. Using the Geodesic Vector:
Now, we want to derive the form of the coordinate shift Δ𝑥𝜇 (𝑥). We begin by writing

𝑥
𝜇
r = 𝑥

𝜇 (𝑥r) + 𝛿𝑥
𝜇 (𝑥r) (1.34)

and writing the physical comoving distance 𝑥r in the arguments of RHS, as a perturbation around
redshift space position (computed using background FLRW)

𝑥
𝜇
r (𝑥r) = 𝑥

𝜇 (𝑥) + 𝑑𝑥
𝜇

𝑑𝑥
𝛿𝑥 + 𝛿𝑥

𝜇 + 𝛿𝑥
𝜇 (𝑥) 𝑑𝛿𝑥

𝜇

𝑑𝑥
2 . (1.35)

Restricting ourselves to the first order, we ignore the O(𝛿2) term in the previous equation. On
comparing Eq. (1.25) and Eq. (1.35) , we can identify the form of the coordinate shift

Δ𝑥
𝜇
=

𝑑𝑥
𝜇

𝑑𝑥
𝛿𝑥 + 𝛿𝑥

𝜇 (𝑥). (1.36)

Since the terms mix-up later, it is worth clarifying on the onset that the scalar 𝛿𝑥 is the radial
shift in the affine parameter, the vector 𝛿𝑥𝜇 is the perturbation to the photon’s trajectory and
Δ𝑥

𝜇 is the total coordinate shift (including both the factors). If we ignore the first derivative
term and continue with this derivation (akin to assuming that real-space and redshift space
positions overlap), we can reconstruct the standard non-relativistic treatment of redshift space
distortions, which yields the Kaiser effect. On doing so, however, we blind ourselves to several
important and observable effects. Therefore, we will keep both the terms.
We defined our 𝑑/𝑑𝑥 operator (Eq. (1.31)) towards the end of Step 1 and if we apply it to our
redshift space coordinate 𝑥𝜇 (Eq. ), we easily get the geodesic vector in redshift space

𝑘
𝜇
=

𝑑𝑥
𝜇

𝑑𝑥
= (−1, 𝒏) (1.37)
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1.3 General Relativistic Redshift Space Distortions

which implies

Δ𝑥
0(𝑥) = −𝛿𝑥 + 𝛿𝑥

0(𝑥) (1.38)

Δ𝑥
i(𝑥) = 𝑛

i
𝛿𝑥 + 𝛿𝑥

i(𝑥). (1.39)

To get the real-space geodesic vector 𝑘𝜇r , we can use Eq. (1.34) as follows

𝑘
𝜇
r ≡ 𝑑𝑥

𝜇
r

𝑑𝑥
=

𝑑

𝑑𝑥
(𝑥𝜇 + 𝛿𝑥

𝜇) = (−1 + 𝛿 𝑓 , 𝑛
i + 𝛿𝑛

i) (1.40)

where we have defined the frequency and spatial shift as

𝛿 𝑓 ≡ 𝑑𝛿𝑥
0

𝑑𝑥
(1.41)

𝛿𝑛
i ≡ 𝑑𝛿𝑥

i

𝑑𝑥
(1.42)

Now, that the various shifts for the different quantities have been defined in both real and redshift
space, we can move ahead with trying to systematically solve for them.

4. Redshift (and Scale Factor) Perturbation:
To derive Δ𝑥0 from the previous step, we will relate the scale factors between real and redshift
space. We can expanding the argument of 𝑎r(𝑥

0
r ) in terms of 𝑥

0 and some linear order
perturbation Δ𝑥

0(similar to what we did with 𝑥
𝜇
r (𝑥r) earlier),

𝑎r

(
𝑥

0
r

)
) =

(
𝑥

0 + Δ𝑥
0
)

(1.43)

= 𝑎

(
𝑥

0
)
+ 𝜕𝑎

𝜕𝑥
0Δ𝑥

0
𝑎

(
𝑥

0
) [

1 + 1
𝑎(𝑥0)

𝜕𝑎

𝜕𝑥
0Δ𝑥

0

]
(1.44)

= 𝑎

(
𝑥

0
) [

1 + HΔ𝑥
0
]
, (1.45)

where we defined
H ≡ 1

𝑎

(
𝑥

0
) 𝜕𝑎

𝜕𝑥
0 = 𝑎𝐻. (1.46)

We can read the fractional change in scale factor across real and redshift space from Eq. (1.45)
as

𝛿 ln 𝑎 =
𝑎r
𝑎

− 1 = HΔ𝑥
0
. (1.47)

To compute 𝛿 ln 𝑎 (and subsequently Δ𝑥
0), we use the standard definition of observed redshift

described by Synge in 1960 (Synge, 1960; Schmidt and Jeong, 2012; Jeong, Schmidt and Hirata,
2012) (

1 + 𝑧obs
)
≡ (1 + 𝑧) =

(
𝑔𝜇𝛼𝑢

𝜇
r 𝑝

𝛼
r

)
|e(

𝑔𝜇𝛼𝑢
𝜇
r 𝑝

𝛼
r

)
|o

(1.48)

where 𝑝
𝜇 is the four-momentum, 𝑢𝛼 is the four-velocity and subscripts denote evaluation at the
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emission and observation frames. The photon four-momentum has the usual expression

𝑝
𝜇
r =

𝑓
(
𝑎r

)
𝑎r

𝑘
𝜇
r (1.49)

with 𝑓 (𝑎) being the photon frequency at scale factor 𝑎. To solve the inner products, we will
make use of the perturbed spacetime metric written in terms of dimensionless Bardeen potentials
because the LIGER code (see §2.2.2) implements the conformal Newtonian gauge

𝑑𝑠
2
= 𝑎

2
r (𝜂)

[
−𝑐2(1 + 2𝜓) 𝑑𝜂2 + (1 − 2𝜙) 𝛿𝐾ij 𝑑𝑥

i
r 𝑑𝑥

j
r

]
. (1.50)

Using Eqs. (1.24), (1.34), (1.48) and (1.49), and keeping only terms in linear order, some
algebraic manipulations eventually yield

1 + 𝛿 ln 𝑎 =
1 + 𝜓e + 𝛿 𝑓e + 𝑣 ∥ ,e/𝑐
1 + 𝜓o + 𝛿 𝑓o + 𝑣 ∥ ,o/𝑐

. (1.51)

In order to find the perturbation to scale factor completely in terms of variables accessible to us
in a (mock or real) survey, we will need to explicitly compute 𝛿 𝑓 . We will do so by integrating
the geodesic equation in real-space (Bertacca, 2015)

𝑑𝑘
𝜇
r

𝑑𝑥
+

(
Γ
𝜇

𝛼𝛽
+ 𝛿𝑥

𝛾
r

𝜕Γ
𝜇

𝛼𝛽

𝛿𝑥
𝛾

)
𝑘
𝛼
r 𝑘

𝛽
r = 0 (1.52)

where Γ
𝜇

𝛼𝛽
corresponds to the Levi-Civita connection of the metric defined in Eq. (1.50). By

solving the time components, we get

𝛿 𝑓 = −[𝜓o − 𝑣 ∥ ,o/𝑐] + 2𝜓 +
∫ 𝑥

0

(𝜙′ + 𝜓
′)

𝑐
𝑑𝑥, (1.53)

which can be further fed into Eq. (1.51) to get our first result worthy of a box

𝛿 ln 𝑎 =

[
𝑣 ∥ ,e − 𝑣 ∥ ,o

𝑐
− (𝜓e − 𝜓o) −

∫ 𝑥

0

(𝜙′ + 𝜓
′)

𝑐
𝑑𝑥

]
. (1.54)

This expression of scale factor perturbation includes, in addition to the classic Doppler term,
contributions from the local potential wells and the gravitational influences encountered along
the path of the photon.

5. Coordinate Map:
Solving the time-component of the geodesic equation has given us 𝛿 𝑓 but we still do not have
all the pieces to compute the coordinate shifts Δ𝑥𝜇. Thus, we also solve the spatial part of the
geodesic equation to get

𝛿𝑛
i
= −𝑣i

o − 𝑛
i
𝜙o −

∫ 𝑥

𝜕𝑥̃ (𝜓 + 𝜙)𝑑𝑥, (1.55)
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where we have introduced 𝜕𝑥̃=𝜕/𝜕𝑥̃ . From the definitions of 𝛿 𝑓 and 𝛿𝑛
i in Eq. (1.42), we can

see that integrating them will give us

𝛿𝑥
0
= −𝑥

[
𝜓o − 𝑣 ∥o/𝑐

]
+

∫ 𝑥

0

[
2𝜓 + (𝑥 − 𝑥) (𝜙

′ + 𝜓
′)

𝑐

]
𝑑𝑥, (1.56)

𝛿𝑥
i
= 𝑛

i
𝑥
[
𝜓o − 𝑣 ∥o/𝑐

]
− 𝑥𝑣

i
⊥o/𝑐

−
∫ 𝑥

0
𝑛

i
[
(𝜓 − 𝜙) + (𝑥 − 𝑥) (𝜙

′ + 𝜓
′)

𝑐

]
𝑑𝑥

−
∫ 𝑥

0
(𝑥 − 𝑥)

[
𝜕

i
𝑥̃ − 𝑛

i(𝑛j𝜕
j
𝑥̃
)
]
(𝜓 + 𝜙)𝑑𝑥. (1.57)

Combining 𝛿𝑥
0, Δ𝑥0 and Δ ln 𝑎, we can assemble

𝛿𝑥 = −
(
𝑥 + 1

H

) [
𝜓o − 𝑣 ∥o/𝑐

]
+ 1
H

[
𝜓e − 𝑣 ∥e/𝑐

]
+

∫ 𝑥

0

[
2𝜓 + (𝑥 − 𝑥) (𝜙

′ + 𝜓
′)

𝑐

]
𝑑𝑥 + 1

H

∫ 𝑥

0

(𝜙′ + 𝜓
′)

𝑐
𝑑𝑥. (1.58)

Finally, we have all the pieces to summarize the coordinate map demanded in Eq. (1.25), which
now includes not only the Doppler effects along LOS but also the deflections in the sky position
caused by gravitational lensing

Δ𝑥
0
=

𝑐

H 𝛿 ln 𝑎 (1.59)

Δ𝑥
i
= −𝑛i

𝑥

(
𝜙o + 𝜓o +

𝑣 ∥e

𝑐

)
− 𝑥

𝑣
i
o
𝑐

− 𝑐

H 𝑛
i
𝛿 ln 𝑎

+ 𝑛
i
∫ 𝑥

0
(𝑥 − 𝑥)𝜓

′ + 𝜙
′

𝑐
𝑑𝑥 −

∫ 𝑥

0
(𝑥 − 𝑥) 𝛿i

j𝜕
j(𝜓 + 𝜙) 𝑑𝑥

+ 2𝑛i
∫ 𝑥

0
(𝜓 + 𝜙) 𝑑𝑥

. (1.60)

With these boxed expressions, we have managed to derive first of the three main pieces described
in the beginning of the schematic layout. Note, that our main aim is to not only transform
coordinates between real and redshift space, but to transform the catalog into an overdensity
map in the redshift space. This requires further corrections due to volume distortions and
transformations in the survey functions. Thus, we will now focus our attention on these two
remaining pieces.

6. Volume Distortion
To transform the real-space volume element to the observed redshift space volume element, we
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start with the following relation (Yoo, 2010; Schmidt and Jeong, 2012)

dVr =
©­­«
√︃
−𝑔

(
𝑥
𝜇
r
)

𝑎
4
r

ª®®¬ 𝜖𝜇𝜈𝛾𝜌
𝑢
𝜇
r
𝑎r

𝜕𝑥
𝜈
r

𝜕𝑥
1
𝜕𝑥
𝛾
r

𝜕𝑥
2
𝜕𝑥
𝜌
r

𝜕𝑥
3 dV . (1.61)

In order to compute the linear order contributions from the volume transformation, we use the
following perturbative expansion for the determinant 𝐵 of a rank to tensor B

𝐵 = 𝐵
(0) + 𝐵

(1)Tr
[
B(0)−1B(1)

]
+ O(2), (1.62)

where the parenthesis denote the order of the perturbation and Tr represents the trace. Applying
this relation to the first term in Eq. (1.61) gives√︃

−𝑔
(
𝑥
𝜇
r
)

𝑎
4
r

= 1 +
𝑔
𝜇
𝜇 (𝑥

𝜇)
𝑎

2
r

. (1.63)

Similarly, the remaining parts can be expanded and simplified. The final result is provided by
Bertacca (2015)

1 + Δ𝑉 = 𝜖𝜇𝜈𝛾𝜌
𝑢
𝜇
r
𝑎r

𝜕𝑥
𝜈
r

𝜕𝑥
1
𝜕𝑥
𝛾
r

𝜕𝑥
2
𝜕𝑥
𝜌
r

𝜕𝑥
3 = 1 + 𝑢

0
r + 𝑛i𝑢

i
r

𝑐 𝑎
+

(
2
𝑥
+ 𝜕∥

)
Δ𝑥 ∥ − 2𝜅 , (1.64)

where we have use the standard definition of the gravitational weak-lensing convergence (Prat
and Bacon, 2025)

𝜅 =
−1
2
𝜕⊥,i Δ𝑥

i
⊥ =

1
2

∫ 𝑥

0
(𝑥 − 𝑥) 𝑥

𝑥
∇2
⊥(𝜓 + 𝜙)𝑑𝑥 − 𝑣⊥,o. (1.65)

We now have the relevant transformations for coordinates and volume elements. To invoke the
fundamental identity expressed in Step 2, the final remaining object of interest is the galaxy
number density itself.

7. Galaxy Number Density:
One particularly succinct way of writing an expression for galaxy number density in redshift
space is to organize the equation in terms of an average number density 𝑛̄g ≡ 𝑛g(𝑥

0
, 𝐹), an

evolution bias E and magnification bias Q. To assemble these terms, it is helpful to first
introduce Magnification M, which is another important general relativistic effect that changes
the observed flux 𝐹 in cosmological surveys

M =
𝐹r
𝐹

=
1

𝐷
2
L,r

𝐷
2
L =

(
𝐷

2
L,r

𝐷
2
L

)−2

, (1.66)

where 𝐷𝐿,𝑟 and 𝐷𝐿 are luminosity distances in real and redshift space respectively. Using the
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cosmic rulers prescription again, we can invert this relationship to write (Bertacca, 2015)

M−1
=

√︃
−𝑔

(
𝑥
𝛼
r
)(

𝑢r, 𝜌 d𝑥 𝜌r
(
𝑥r

)
/d𝑥

)
𝑎

2
𝜖𝜇𝜈𝜌𝜎 𝑢

𝜇 d𝑥𝜈r
(
𝑥r

)
d𝑥

𝜕𝑥
𝜌
r

𝜕𝑥
𝑗

𝜕𝑥
𝜎
r

𝜕𝑥
𝑘
𝛼
𝑗
𝛽
𝑘
, (1.67)

where {𝛼i
, 𝑛

i
, 𝛽

i} form a three dimensional orthonormal basis. On expanding this expression to
linear order,

M−1
=1 + 1

2𝑎2
r
𝑔
𝜇
𝜇 +

𝑢
0
r + 𝑛𝑖𝑢

𝑖
r + 𝑔𝜇0𝑢

𝜇
r − 𝑛

𝑖
𝑔𝜇𝑖𝑢

𝜇
r

𝑐

+ 2𝛿 ln 𝑎 + 𝜕𝑥

(
Δ𝑥

0 + Δ𝑥 ∥

)
+ 2
𝑥
Δ𝑥 ∥ − 2𝜅

(1.68)

We can rewrite this result as

M =1 + ΔM = 1 − 1
2𝑎2

r
𝑔
𝜇
𝜇 −

𝑢
0
r + 𝑛𝑖𝑢

𝑖
r + 𝑔𝜇𝑢

𝜇
r − 𝑛

𝑖
𝑔𝜇𝑖𝑢

𝜇
r

𝑐

− 2𝛿 ln 𝑎 − 𝜕𝑥

(
Δ𝑥

0 + 𝑛𝑖Δ𝑥
𝑖
)
− 2
𝑥
𝑛𝑖Δ𝑥

𝑖 + 2𝜅

(1.69)

We have already computed 𝑛
i, Δ𝑥𝜇, 𝛿 ln 𝑎 and 𝜅 in the previous steps. Now, we can simply

substitute all those quantities and write the magnification in conformal Newtonian gauge as

M = 1 + 2𝜅 + 2𝜓e − 2𝑣 ∥o/𝑐 − 2
(
1 − 𝑐

H𝑥

)
𝛿 ln 𝑎 − 2

𝑥

∫ 𝑥

0
(𝜓 + 𝜙)d𝑥. (1.70)

The integrand to compute the total galaxy number as mentioned in Eq. (1.32) was 𝑎3
r (𝑥

0
r ) 𝑛g(𝑥

𝜇
r , 𝐹r).

The scale factor term can be easily linearized(𝑎r
𝑎

)3
= 1 + 3 𝛿 ln 𝑎. (1.71)

For the number density term, we can expand as follows

𝑛g
(
𝑥
𝜇
r , 𝐹r

)
= 𝑛g

(
𝑥
𝜇 + Δ𝑥

𝜇
, 𝐹 + 𝐹ΔM

)
= 𝑛g

(
𝑥
𝜇
, 𝐹

)
+
𝜕𝑛g

(
𝑥

0
, 𝐹

)
𝜕𝐹

𝐹ΔM +
𝜕 𝑛g

(
𝑥

0
, 𝐹

)
𝜕𝑥

0 Δ𝑥
0

(1.72)

or, alternatively, we can re-parametrize the arguments and express this result in terms of
luminosity

𝑛g
(
𝑥
𝜇
r , 𝐹r

)
= 𝑛g

(
𝑥
𝜇
, 𝐿min

)
−
𝜕 𝑛g

(
𝑥

0
, 𝐿min

)
𝜕 ln 𝐿min

ΔM +
𝜕 𝑛g

(
𝑥

0
, 𝐿min

)
𝜕𝑥

0 Δ𝑥
0. (1.73)

Now, we will define two biases which make the interpretation of the derivative terms easier. We
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begin with

𝜕 𝑛̄g

𝜕𝑥
0

����
𝐿̄=4𝜋𝐷2

𝐹

= H
𝜕 𝑛̄g

𝜕 ln 𝑎̄

����
𝐿̄

= − H
𝜕 ln 𝑛̄g

𝜕 ln(1 + 𝑧)

����
𝐿min=𝐿lim (𝑧)

= −HE, (1.74)

and define an evolution bias

E(𝑧) ≡ −
𝜕 𝑛̄g

𝜕 ln(1 + 𝑧)

����
𝐿𝑚𝑖𝑛=𝐿lim (𝑧)

(1.75)

which captures the change in galaxy population due to redshift evolution. Similarly, we define
another bias parameter

Q(𝑧) = −
𝜕 ln 𝑛̄g

𝜕 ln 𝐿min

����
𝐿𝑚𝑖𝑛=𝐿lim (𝑧)

(1.76)

which represents the changes in galaxy population due to change in (de)magnification. With
these bias terms, we can rewrite Eq. (1.73) in a condensed manner as (Borzyszkowski, Bertacca
and Porciani, 2017; Elkhashab, Porciani and Bertacca, 2021)

𝑛g
(
𝑥
𝜇
r , 𝐹r

)
= 𝑛̄g [1 + 𝛿g + E 𝛿 ln 𝑎 − Q(M − 1)] (1.77)

1.3.3 Assembling Redshift Space Overdensity

We now have all the terms and relations to perform the last move of our derivation i.e. assembling an
expression that maps a real-space catalog to the redshift space overdensity field 𝛿𝑔,𝑠 including all the
linear order relativistic effects. By definition, the density contrast can be written as

𝛿𝑔,𝑠 =
𝑛g(𝑥

0
, 𝐹) − 𝑛̄g(𝑥

0
, 𝐹)

𝑛g(𝑥
0
, 𝐹)

(1.78)

which we can expand using our previous results into

𝛿g, s(𝒙) = 𝛿g −
1
H

𝜕
(
𝒗e · 𝒏

)
𝜕𝑥

+ 2(1 − Q)𝜅 + 2(1 − Q)
𝑥

∫ 𝑥

0
(𝜓 + 𝜙)d𝑥

+
[
E − 2Q − H ′

H2 − 2(1 − Q)𝑐
𝑥H

]
×

[
𝒗e
𝑐

· 𝒏 −
(
𝜓e − 𝜓o

)
−

∫ 𝑥

0

(
𝜓
′ + 𝜙

′)
𝑐

d𝑥
]

− 2(1 − Q)𝜓e + 𝜙e +
𝜓
′
e

H +
[
2 − E + H ′

H2 + 2(1 − Q)𝑐
𝑥H

]
𝒗o
𝑐

· 𝒏

. (1.79)

Recall that we performed this calculation in Poisson (conformal Newtonian) gauge and that LIGER
method uses the synchronous-comoving gauge. In Step 1, we wrote Eq. (1.21) which relates Poisson
gauge with SC gauge. Now, we can finally apply this relation to Eq. (1.79) and write (Challinor and
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A. Lewis, 2011; Bertacca, 2015)

𝛿g, s(𝒙) = 𝑏𝛿SC − 1
H
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)
𝜕𝑥
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+
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𝑥H

]
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· 𝒏 −
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−
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𝑐

d𝑥
]

− 2(1 − Q)𝜓e + 𝜙e +
𝜓
′
e

H + (3 − E)HΦv

+ 2(1 − Q)
𝑥

∫ 𝑥

0
(𝜓 + 𝜙)d𝑥

+
[
2 − E + H ′

H2 + 2(1 − Q)𝑐
𝑥H

]
𝒗o
𝑐

· 𝒏

(1.80)

Interpreting Terms and Effects

Let us take a moment to appreciate how many cosmological effects of note we have recovered, without
any ad-hoc effort, by giving a relativistic treatment to linear order metric perturbations.

1. Baseline overdensity 𝑏𝛿SC: This term uses the dark-matter overdensity in synchronous comoving
gauge and paints galaxy overdensity as per the standard biasing prescription. Incidentally, the
idea of galaxies being biased tracers of DM overdensity also goes back to the work of Kaiser
(1984) when he was investigating the structure of Abell cluster. The redshift evolution of the
bias factor 𝑏 was first studied systematically by Tegmark and Peebles (1998) and they found
that 𝑏 is generally larger at earlier epochs and at 𝑡 −→ ∞ limit, galaxies become unbiased tracers
of the DM field. Later studies by Mann, Peacock and A. F. Heavens (1998) also established
that while the bias is generally scale dependent, it is only weakly correlated and approaches a
constant value at large scales.

2. Kaiser Correction 𝜕 (𝒗e.𝒏)/𝜕 𝑥: This is the classic squashing and stretching along the line of
sight. The dot product of emitter velocity and 𝒏 break parity symmetry and the term captures
how segments moving towards LOS contribute to the overdensity differently from the segment
that are receding away. This same term appears later in the Doppler correction as well. Due
to this effect, large scale overdensities with coherent inflows appear flattened like pancakes
and smaller virialized structures with random velocity dispersion become elongated (as in
‘Fingers-of-God’). Also, given that the in-fall velocities are sensitive to the growth rate 𝑓 (𝑧),
the quadrupole in LSS can give constraints on 𝑓 𝜎8 combination.

3. Weak Lensing Convergence 2(1 − Q)𝜅: Weak gravitational lensing (Prat and Bacon, 2025;
Davies, Cautun and Li, 2018) slightly deflects null geodesics such that a bundle that subtends
solid angle dΩ at the source arrives at the telescope with dΩ→(1 + 2𝜅) dΩ. The convergence
scalar13

𝜅, when positive, acts like a magnifying glass. In linear theory 𝜅 is a line-of-sight

13 An elementary discussion on 𝜅 kernel and its relation to the Jacobi matrix is presented in (Prat and Bacon, 2025))
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integral of the Weyl potential
Ψ𝑊 ≡ 𝜓 + 𝜙

2
,

which is the gauge-invariant combination of the Newtonian potential 𝜓 and the curvature
potential 𝜙. Because photons are null geodesics they only feel 𝜓 + 𝜙, so measuring 𝜅 directly
tests the relativistic Poisson equation and any modified-gravity slip between 𝜓 and 𝜙 (Grimm,
Bonvin and Tutusaus, 2024).

4. Sachs-Wolfe Effect (𝜓e − 𝜓o): This term corresponds to the ‘standard’ Sachs-Wolfe effect
(Sachs and Wolfe, 1967), caused by the difference in the local potentials around the source and
the observer, which can endow or steal additional energy from the photons via gravitational
redshift.

5. Integrated Sachs-Wolfe −
∫ 𝑥

0
(𝜓′ + 𝜙

′)/𝑐 d𝑥: A photon climbing in and out of a static potential

well loses the same energy it gains and its redshift is unchanged. But if the potential itself
evolves while the photon is in flight (because cosmic expansion makes the gravitational wells
decay), then the departure and arrival energies no longer cancel. The line-of-sight integral
of the time derivatives of Newtonian and curvature potentials, 𝜓′ and 𝜙

′, quantifies that net
energy shift and therefore perturbs the inferred radial position of luminous sources. This is
particularly noticeable in the temperature maps of the Cosmic Microwave background at large
scales (Nishizawa, 2014).

6. Source Potential Lensing −2(1 − Q)𝜓e: This term captures the magnification bias induced by
the local gravitational well around the source of the emission.

7. Gauge Shift (3 − E)HΦ𝑣 : This arises due to the mapping between SC and Poisson gauge
(Borzyszkowski, Bertacca and Porciani, 2017).

8. Shapiro (gravitational) time delay
∫ 𝑥

0 (𝜓 + 𝜙) d𝑥: Every potential well or hill that a photon
traverses slows or speeds its clock relative to an unperturbed light path (the same effect Shapiro
(1964) proposed to test GR with radar echoes). The accumulated delay shifts the photon’s
emission conformal time, and hence the inferred radial position of the source, by an amount
proportional to the line-of-sight integral of the Weyl potential (𝜓 + 𝜙).

9. Observer Velocity Term (𝒗o.𝒏/𝑐): This term and the various functions in the preceding
parenthesis capture the subtle effects of observer velocity on the overdensity maps in redshift
space (Elkhashab, Porciani and Bertacca, 2024). In §1.4, we will isolate this effect and in the
later chapters of this dissertation, subject it to various forms of statistical scrutiny.

Limiting Behavior

To estimate when these relativistic effects are relevant, we begin by noticing that they are mostly of the
order of the Bardeen potentials (∼ 𝜙, 𝜓). Further, in ΛCDM, at linear order, these Bardeen potentials
are identical to source potential 𝜑/𝑐2 of the Poisson equation (Eq. (1.12)). Thus, we can assume the
Bardeen potentials to be of the same order as 𝜑 in perturbed cosmology and identify at which scales 𝜑
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is comparable to real-space overdensity 𝛿. On taking the Fourier transform of Eq. (1.12), we can write

𝑘
2
𝜑̃(𝒌) = −

3𝐻2
0Ωm
2𝑎

𝛿(𝒌) (1.81)

This can be rewritten using a physical scale 𝜆𝑝 = 𝑎/𝑘 and the Hubble radius 𝜆𝐻 = 1/𝐻 as

𝜑̃(𝒌) ≈ −
(
𝜆p

𝜆H

)2

𝛿(𝒌). (1.82)

This expression tells us that the gravitational potential is damped by an amplitude factor of (𝜆𝑝/𝜆𝐻)
2

i.e. the effects which are comparable in their magnitude to 𝜑 become negligible for 𝜆𝑝 « 𝜆𝐻 . It
is only when the physical scales that we are probing are comparable to the Hubble radius (i.e. the
largest modes of the large scale structure), that these relativistic effects manifest themselves. Few
of our current generation surveys can map some of these large scales modes and, consequently, the
relativistic effects can in principle be detected in our data (Elkhashab, Porciani and Bertacca, 2021).

If we consider the sub-Hubble limit where the factors dependent on the Bardeen potentials can be
ignored and we assume that light rays travel in Euclidean straight lines as opposed to null-geodesics
which curve around massive objects (i.e. ignoring lensing), then the classical Kaiser effect can be
recovered as follows. We start with denoting the redshift space coordinates as 𝒙 and real-space
coordinates 𝒙r, the peculiar velocity 𝒗 (in units of Hubble constant) comes into the coordinate map as

𝒙 = 𝒙r

(
1 + 𝑢(𝒙r)

𝑥r

)
. (1.83)

where we define 𝑢 ≡ 𝒗e.𝒏. Assuming the object is very distant 𝑘𝑥r ≫ 1, the Jacobian between the two
coordinates can be written as

𝑑
3𝒙 =

(
1 + 𝑑𝑢

𝑑𝑥r

)
𝑑

3𝒙r (1.84)

where we have kept terms only to linear order in 𝑢/𝑥r (notice the similarity to the Kaiser term’s
appearance in Eq. (1.80) explained in the previous subsection). As in our primary derivation, we
invoke number density conservation 𝛿𝑑

3𝒙 = 𝛿r𝑑
3𝒙r for plane-wave perturbation 𝛿. From linear theory

(Peebles, 2020), we have ¤𝛿 = −𝑖𝑘𝑣. Now, if we define 𝜇 = 𝒙̂r.𝑘̂ and 𝑓 (Ω) ≡ 𝑑 ln 𝛿/𝑑 ln 𝑎 ≈ Ω
0.6, then

we can write
𝑑𝑢

𝑑xr
= 𝜇

𝑑

𝑑x
𝑣

= 𝜇(𝑖𝑘𝜇)𝑣
= −𝜇2(−𝑖𝑘𝑣)
= −𝜇2

𝑓 (Ω)𝛿

(1.85)

because ¤𝛿 = 𝑓 (Ω)𝛿 in units where 𝐻 = 1. Putting this together, we finally get the relationship between
real and redshift space DM overdensities as

𝛿𝑠 = 𝛿

(
1 + 𝑓 𝜇

2
)
. (1.86)
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This dark matter overdensity can be related to the galaxy fluctuation in our idealized limit using linear
bias as

𝛿𝑔,𝑠 = 𝑏

(
1 + 𝑓 𝜇

2
)
𝛿. (1.87)

The 𝜇-dependence of the over-density (and, consequently, the correlation function) can be expanded
out in Legendre polynomials. We will discuss in much greater detail when we talk of the multipoles
expansion for the power spectrum in §2.1.1. For now, it suffices to notice that the redshift space
overdensity field acquired via the classical Kaiser derivation has a mismatch of several terms when
compared against the full general relativistic treatment. In the following section, we describe how this
mismatch can be used to isolate the FOTO signal.

1.4 Isolating Finger-of-the-Observer Effect

With the general theoretical formalism in place, we can now easily isolate the FOTO signal and remark
on some of its features. In this section, we restrict ourselves to the FOTO model and save the detailed
discussion on the estimators to extract FOTO signal from catalogs for §3.1. We begin by grouping all
the terms independent of observer velocity into one function and rewriting Eq. (1.80) as

𝛿𝑔,𝑠 (𝒙) = 𝛿com(𝒙) +
𝛼o(𝑥)
𝑥

𝒗o.𝒙̂

𝑎𝐻
(1.88)

where 𝛿com contains all the terms independent of 𝑣o and

𝛼o(𝑥) ≡ 2(1 − Q) − 𝑥𝐻

𝑐(1 + 𝑧) E + 𝑥𝐻

𝑐(1 + 𝑧)

[
3 − 1 + 𝑧

𝐻

d𝐻
d𝑧

]
(1.89)

If we repeat the same exercise in the classical Kaiser regime (including the full-volume Jacobian,
which leads to a magnification bias, but for vanishing Bardeen potentials 𝜙 = 𝜓 = 0), we find that we
arrive at an expression similar to Eq. (1.88)

𝛿
c
g, s(𝒙) = 𝛿

c
com(𝒙) +

𝛼c(𝑥)
𝑥

𝒗o · 𝒙̂
𝑎𝐻

, (1.90)

where the 𝑐 denotes an inclusion of only non-relativistic classical corrections. The primary difference
is encoded in the distinction between 𝛼o(𝑥) and

𝛼c(𝑥) ≡
d ln 𝑥2

𝑛̄g, s(𝑥)
d ln 𝑥

+ 𝐻𝑥

𝑐(1 + 𝑧)

[
1 − d ln 𝐻

d ln(1 + 𝑧)

]
. (1.91)

To compare the two functions more easily, we can rewrite the derivative as

d ln 𝑥2
𝑛̄g, s(𝑥)

d ln 𝑥
= 2 +

d ln 𝑛̄g, s(𝑥)
d ln 𝑥

= 2 +
𝜕 ln 𝑛̄g

𝜕 ln 𝐿min

����
𝐿min=𝐿lim (𝑧)

d ln 𝐿lim
d ln 𝑥

+
𝜕 ln 𝑛̄g

𝜕 ln 𝑥
,

(1.92)
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and using the definition of magnification and evolution bias,

d ln 𝑥2
𝑛̄g, s(𝑥)

d ln 𝑥
= 2 − Q d ln 𝐿lim

d ln 𝑥
+

𝜕 ln 𝑛̄g

𝜕 ln(1 + 𝑧)
d ln(1 + 𝑧)

d ln 𝑥

= 2 − Q d ln 𝐿lim
d ln 𝑥

− E 𝐻𝑥

𝑐(1 + 𝑧)

= 2(1 − Q) − (2Q + E) 𝐻𝑥

𝑐(1 + 𝑧) .

(1.93)

On substituting this relation back into the definition of 𝛼c, we can rewrite

𝛼c(𝑥) = 2(1 −𝑄) − 𝐻𝑥

𝑐(1 + 𝑧)

[
2𝑄 + E + 1 − d ln 𝐻

d ln(1 + 𝑧)

]
(1.94)

which differs from the relativistic treatment by

Δ𝛼 ≡ 𝛼𝑐 − 𝛼o =
−2𝑟𝐻
𝑐(1 + 𝑧) (𝑄 + 1) (1.95)

This difference between the two treatments serves as the key to measuring observer velocity (or
cosmological parameters) using relativistic effects on the large scale structure. Later chapters in this
thesis are dedicated to exploiting the difference Δ𝛼 from Eq. (1.95). In Chapter 2, we will focus on
the computational aspect of the FOTO signal by introducing the statistical estimators essential for our
analysis and describing the LIGER method in greater detail. In Chapter 3, we will present our main
results on peculiar velocity constraints using FOTO effect and discuss the role of higher multipoles.
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CHAPTER 2

Methods

The ‘uniqueness of the universe’, in philosophy of cosmology literature (Ellis, 2006; Ellis, 2014;
Curiel, 2015), refers to a fundamental difficulty in doing cosmological research scientifically i.e. our
strictly limited access to only one instantiation of possible universes, ours. We must confront the fact
that our cosmological theories have a single referent, constituting a total sample size of 𝑁 = 1. Yet, in
an era shaped by the successes of ΛCDM and the astonishing precision of modern observations, it is
easy to forget that, even into the 1960s, cosmology was widely considered as a branch of philosophy
(Munitz, 1962; Longair, 2006; Kragh, 1999). The theoretical elegance of general relativistic models
and the sensitivity of observations deserve immense credit for transforming abstract speculations
about the universe into scientifically admissible claims. However, alongside these triumphs lies a less
celebrated but equally essential development and that is the adoption of appropriate statistical tools
capable of connecting cosmological predictions with observations. In §2.1, we will discuss these
statistical tools, focusing on relativistic effects on the 1D matter power spectrum. Specifically, we
develop the statistical interface that connects the perturbative treatment of general relativistic RSD
(from §1.3) to Stage-IV cosmological surveys (discussed later in §3).

Another scientific domain, that of the study of living beings, grapples with a similar uniqueness
problem. We are confined to studying a single evolutionary tree, branching from the only known
seed of life (Blount, Lenski and Losos, 2018). This restriction mirrors the epistemological challenge
faced in cosmology and, hence, the opening lines of Peebles’ chapter on n-point correlation functions
(Peebles, 2020) are particularly striking:

Two general approaches to the empirical study of the large-scale matter distribution might
be called the botanical and the statistical. Reduction of phenomena to specific sorts of
objects like galaxies and Abell clusters of galaxies is direct and certainly has proved
profitable. But [...] the general distribution is so complicated, and the data we hope to get
so schematic, that a full reduction to genera or species might not be profitable or even
possible.

The statistical approach to the empirical study of the large-scale matter distribution relies on a
central methodological pillar that Edwin Hubble called the ‘Fair Sample’ assumption (Hubble, 1937;
Buchert and Martinez, 1993; Coles, 2002). It involves assuming the following three premises (Peebles,
2020).
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1. Well separated parts of the universe can be treated as independent realizations of the same
physical process.

2. There are many independent observable lumps of the universe that can be aggregated to
approximate a statistical ensemble.

3. The statistical properties of this ensemble are invariant under rotations.

Given the detailed discussion of cosmic anisotropies in §1.3, one might naturally expect that our
focus lies on effects that apparently violate the third premise. This anisotropic complication motivates a
decomposition of observed statistics into a sum over various multipoles. For the Finger-of-the-Observer
(FOTO) effect, the leading (monopole) contribution has been studied in detail by Elkhashab, Porciani
and Bertacca (2024). However, as the title of this thesis suggests, our focus is on investigating the
higher-order multipoles of the FOTO signal.

2.1 Two-Point Statistics

Historically, the clustering of large-scale structure has been commonly analyzed using variants of
the autocorrelation function (Zwicky, 1953; Limber, 1953; Neyman, Scott and Shane, 1956). Its
sustained popularity owes partly to the fact that its redshift dependence is theoretically well established
and partly to the ease with which it can be scaled to analyze massive datasets (more about this in
§2.1.4). Despite the abundance of alternatives—ranging from nearest neighbor methods (Bhavsar,
1978; Banerjee and Abel, 2020) to sophisticated persistent homology (Pourojaghi, Malekjani and
Davari, 2024; Yip, Rouhiainen and Shiu, 2025) or information-geometric analyses (Giesel et al.,
2021)—the two-point correlation function (2PCF) and its Fourier transform, the power spectrum,
remain central statistical tools due to their robust constraints on matter clustering in massive redshift
surveys1.

2PCF admits a simple interpretation. It quantifies the excess probability of finding two objects
located at x1 and x2 with respect to a uniform Poisson distribution (Peebles, 2020)

𝑑P = 𝑛̄
2(𝑧) [1 + 𝜉] 𝑑

3
𝑥1 𝑑

3
𝑥2. (2.1)

Assuming the symmetries of an ideal FLRW universe simplifies the correlation function substantially
by removing several degrees of freedom under isotropy and homogeneity. The galaxy correlation
function, as a biased tracer of the underlying dark matter field (§2.2.3), then takes the form

⟨𝛿𝑔 (x1, 𝑧) 𝛿𝑔 (x2, 𝑧)⟩ = 𝜉𝑔 ( |x1 − x2 |, 𝑧) = 𝜉𝑔 (𝑟, 𝑧) (2.2)

where the angular brackets represent an ensemble average, 𝜉𝑔 is the galaxy two-point correlation
function and r = x2 − x1 is the separation vector.

While in principle the correlation function and its Fourier conjugate (power spectrum) contain the
same information, one or the other may prove more useful depending on the specific application. We

1 The allure of the 2PCF is, in-fact, so enduring that it is abundantly used in several other scientific disciplines too. For
instance, the formalism developed by Ripley (1977) is now used to study patterns of species distribution in forestry data
(Nuske, Sprauer and Saborowski, 2009).
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can understand the power spectrum 𝑃(𝑘, 𝑧) as the autocorrelation function defined in the Fourier
space, 〈

𝛿(𝒌, 𝑧)𝛿
(
𝒌′, 𝑧

)〉
= (2𝜋)3

𝛿D
(
𝒌 + 𝒌′

)
𝑃(𝑘, 𝑧) (2.3)

where k and k′ are the wave-vectors and a Fourier space overdensity field is defined as

𝛿(𝒌, 𝑧) =
∫

𝛿(𝒙, 𝑧)𝑒i𝒌 ·𝒙 d3
𝑥. (2.4)

From the governing equations of cosmic structure formation, the redshift evolution of the galaxy
power spectrum 𝑃𝑔 is typically modeled as

𝑃g(𝑘, 𝑧) = 𝑏
2(𝑧)𝐷2

+(𝑧)𝑃(𝑘, 𝑧 = 0), (2.5)

where 𝑏(𝑧) is the linear bias and 𝐷+(𝑧) is the growth factor.

2.1.1 Global Plane-Parallel Approximation

Due to redshift-space distortions, the symmetries of an ideal FLRW universe do not fully carry
over to observational data. Translational invariance is broken (Szalay, Matsubara and Landy, 1998),
spacetime coordinates become entangled along our past light cone (Bertacca, 2020), and as a result,
the simplified form of the two-point correlation function in Eq. (2.2) must be generalized:

⟨ 𝛿𝑔 (x1, 𝑧1) 𝛿𝑔 (x2, 𝑧2)⟩ = 𝜉𝑔 (x1, x2, 𝑧1, 𝑧2). (2.6)

To circumvent the full complexity, Kaiser (1987) suggested the Global Plane Parallel (GPP) approxim-
ation which posits that for sufficiently small sky volumes and distant observers, all lines-of-sight (LOS)
are effectively parallel and can be represented by a single LOS direction 𝑥𝑐. Under these assumptions,
the correlation function can be parameterized by separation r, line-of-sight 𝑥𝑐 and redshift 𝑧, as given
in (Hamilton, 1992; Hamilton and Culhane, 1997)

𝜉g
(
𝑟, 𝒓̂ · 𝒙̂c, 𝑧

)
=

∑︁
𝑙=0,2,4

Fℓ (𝑧)𝐷
2
+(𝑧)𝑏

2(𝑧)𝜁ℓ (𝑟)Lℓ
(
𝒓̂ · 𝒙̂c

)
, (2.7)

where

𝜁ℓ (𝑟) =
𝑖
ℓ

2𝜋2

∫
𝑘

2
𝑃(𝑘, 𝑧 = 0) 𝑗ℓ (𝑘𝑟), (2.8)

Lℓ are the Legendre polynomials and 𝑗ℓ represent the spherical Bessel functions (show in Fig. 2.1).
The appearance of Legendre polynomials and Bessel functions is unsurprising since the origins of
both can be traced back to early attempts at solving equations describing the celestial sphere2,3.

2 In 1784, shortly after his award-winning treatise on projectiles in resistive medium, Legendre published a paper titled
‘Sur l’attraction des Sphéroïdes homogènes’ (On the Attraction of Homogeneous Spheroids) (Legendre, 1785). Here, he
presented his work on the so-called Legendre polynomials and how they relate to solutions of Laplace’s equation for
gravitational potential.

3 Although Friedrich Bessel was not one of the first people to work with the spherical functions now bearing his name, he
did launch a thorough systematic investigation of them. One of Bessel’s motivations for this was to simplify a series
expansion by Lagrange to solve the transcendental Kepler equation (Dutka, 1995)
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Figure 2.1: Legendre polynomials (left) and Spherical Bessel Functions (right) computed for a range of different
ℓs. These functions serve as helpful basis for projecting out the multipole structure of redshift space distortions
and estimating the different multipole orders of two-point statistics.

The power spectrum in redshift space, under the GPP approximation, takes an analogous multipole-
decomposed form

𝑃g, s(𝒌, 𝑧) =
∑︁
𝑙

Fℓ (𝑧)𝐷
2
+(𝑧)𝑏

2(𝑧)𝑃(𝑘, 𝑧 = 0)Lℓ
(
𝒌̂ · 𝒙̂c

)
. (2.9)

For thick redshift bins, an effective Fℓ parameter can be defined as

𝐹eff ,ℓ

(
𝑧𝑖 , 𝑧 𝑓

)
=

∫ 𝑧 𝑓
𝑧𝑖

Fℓ (𝑧)𝑏
2(𝑧)𝐷2

+(𝑧)𝑛̄
2
g(𝑧)

(
d𝑉S/d𝑧

)
d𝑧∫ 𝑧 𝑓

𝑧𝑖
𝑛̄

2
g(𝑧)

(
d𝑉S/d𝑧

)
d𝑧

(2.10)

where 𝑉𝑆 is the survey volume.

If we restrict ourselves to the classical non-relativistic redshift space distortions (as in Eq. (1.87)),then
the distortion can be fully characterized by the first three even multipoles under the GPP approximation

F0(𝑧) = 1 + 2
3
𝛽(𝑧) + 1

5
𝛽

2(𝑧) (2.11)

F2(𝑧) =
4
3
𝛽(𝑧) + 4

7
𝛽

2(𝑧) (2.12)

F4(𝑧) =
8

35
𝛽

2(𝑧) (2.13)

where the linear redshift distortion parameter is defined as

𝛽(𝑧) = 1
𝑏(𝑧)

d ln 𝐷+
d ln 𝑎

����
𝑎= 1

(1+𝑧)

. (2.14)
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Clearly, for small 𝛽, the monopole dominates with higher order multipole contributing progressively
less. Although the general relativistic effects redistribute the power into additional multipole moments,
the monopole amplitude remains the dominant signal even in the relativistic treatment (discussed later
in §2.1.3).

2.1.2 Yamamoto-Bianchi Estimator

To study the additional multipoles mentioned in the previous subsection, we will utilize a numerical
implementation of the Yamamoto-Bianchi (YB) Estimator (Yamamoto, 2003; Bianchi et al., 2015)
which is a minor modification of the famous prescription by Feldman, Kaiser and Peacock (1994).
To derive the form of the YB estimator, we use the definition of the FKP field (Feldman, Kaiser and
Peacock, 1994) as our starting point

𝐹 (𝒙) = 𝑤(𝒙)
√
𝐴

[
𝑛̂𝑔 (𝒙) − 𝛼𝑛̂𝑟 (𝒙)

]
, (2.15)

where, within a given redshift bin, 𝑛̂𝑔 (𝒙) is the number density field of the observed galaxy catalog
and 𝑛̂𝑟 (𝒙) is the number density field of the corresponding randoms catalog (which is generated such
that they match the redshift distribution of the data but contain no intrinsic clustering). We will have
more to say about the catalog generation in §2.2. Additionally, the standard FKP weights 𝑤(𝒙) do not
affect the power spectrum estimate but are tuned to minimize variance in the measurements (Feldman,
Kaiser and Peacock, 1994)

𝑤(𝒙) = I(𝒙) [1 + 𝑛̄𝑔 (𝒙)P0]
−1
, (2.16)

where P0 = 2 × 104 Mpc3
ℎ
−3 and I(𝒙) is an indicator function which takes the value of one inside

the redshift bin and zero everywhere else. Using these weights, we can also define the standard FKP
normalization parameter as

𝐴 ≡
∫

𝑤
2(𝒙)𝑛̄2

𝑔 (𝒙) 𝑑
3
𝑥. (2.17)

Finally, the 𝛼 parameter4 accounts for the fact that the artificially generated randoms catalog often
includes far more objects than the observed galaxy catalog. This means that 𝛼 acts as a normalization
constant which scales down the average number density of the randoms catalog to match that of the
galaxy catalog,

𝛼 =

∫
𝑤(𝒙)𝑛̂𝑔 (𝒙)d

3
𝑥∫

𝑤(𝒙)𝑛̂r(𝒙)d
3
𝑥
. (2.18)

In our case, the 𝛼 ≈ 0.1, indicating the inclusion of ten times as many synthetic objects in the randoms
catalog compared to the observed ones in the galaxy catalog.

Once the FKP field is constructed, which involves running an interpolation routine to convert a
list of particle coordinates into a density function defined on a grid (§2.1.4), the power spectrum

4 This is not to be confused with 𝛼𝑜, 𝛼𝑐 and Δ𝛼 in §1.4. The notational clash arises from entrenched conventions in both
power spectrum and FOTO studies.
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multipoles can be estimated using the YB estimator as (Yamamoto, Nishioka and Taruya, 2000)

𝑃̂ℓ (𝑘) = (2ℓ + 1)
∭ [

𝐹
(
𝒙1

)
𝐹

(
𝒙2

)
Lℓ

(
𝒌̂ · 𝒙̂m

)
e−i·k·(x1−x2)d3

𝑥1 d3
𝑥2

dΩ𝑘
4𝜋

]
− 𝑃̂

SN
ℓ (𝑘) ,

(2.19)
where the Poisson shot noise contribution arising due to an over counting of self-pairs is expressed as

𝑃̂
SN
ℓ (𝑘) = (1 + 𝛼)

𝐴

∫
𝑤

2(𝒙)𝑛̂g(𝒙)Lℓ
(
𝒌̂ · 𝒙̂m

)
d3
𝑥. (2.20)

Further, the unit vector 𝒙̂𝑚 refers to a choice of convention required to go beyond the GPP approximation
(Yamamoto, Nakamichi et al., 2006). The extension beyond GPP is facilitated by the so-called wide-
angle formalism which parametrizes the triangle subtended by a pair of galaxies onto the observer.
Fig. 2.2 summarizes three distinct parametrization conventions and Reimberg, Bernardeau and
Pitrou (2016) reviews of the impact of the chosen convention on the power spectrum multipoles. For
instance, Reimberg, Bernardeau and Pitrou (2016) find that the end-point parameterization, owing to
its inherent asymmetry, introduces spurious odd-multipoles even within the classical Kaiser framework.
LIGER papers (Borzyszkowski, Bertacca and Porciani, 2017; Elkhashab, Porciani and Bertacca, 2021;
Elkhashab, Porciani and Bertacca, 2024) adopt the mid-point parametrization for defining 𝒙̂𝑚 because
this is the standard within Euclid collaboration. Thus, we define

𝒓 = 𝒙2 − 𝒙1, 𝒙m =
𝒙2 + 𝒙1

2
, 𝜇 ≡ cos 𝜃 = 𝒓̂.𝒙̂𝑚. (2.21)

We also note that, in Eq. (2.19), we have isolated multipole moments of the power spectrum
corresponding to different values of ℓ and expressed them as a family of one-dimensional functions.
This is done by first projecting the three-dimensional FKP fields onto the (orthogonal) Legendre
polynomial basis Lℓ and, then, computing angular averages of the projected Fourier transform kernels
over shells of different radii in the k-space.

Lastly, there is one more practical limitation to incorporate in our discussion of the power spectrum
before deriving the expected signatures of the FOTO effect. Here, I am referring to the fact that
we only observe a limited volume of the universe. Consequently, the Fourier transform introduces
spurious signatures (sometimes called ‘ringing’) in the estimated power spectrum multipoles. To
account for this, we convolve the power spectrum by modifying the expression for the FKP field (Eq.
(2.15)) as (Peacock, 1991; Beutler et al., 2014; Mattia and Ruhlmann-Kleider, 2019)

𝐹 (𝒙) = 𝑊 (𝒙)𝛿g(𝒙) −𝑊 (𝒙)
∫
𝑊

(
𝒙′

)
𝛿g

(
𝒙′

)
d3
𝑥
′∫

𝑊
(
𝒙′

)
d3
𝑥
′ , (2.22)

where the window function is given by

𝑊 (𝒙) =
𝑤(𝒙) 𝑛̄𝑔 (𝒙)√

𝐴
. (2.23)

with 𝑤(𝒙) being the standard FKP weights (Eq. (2.16)) and 𝐴 being the FKP normalization constant
(Eq. (2.17)). The first term of the modified FKP field in Eq. (2.22) corresponds to the observed
overdensity field and the second term can be interpreted as an integral constraint which enforces that
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(a) End-point (b) Bisector (c) Midpoint

Figure 2.2: Illustration of three possible parameterizations available for wide-angle formalism as discussed
in Reimberg, Bernardeau and Pitrou (2016). LIGER papers adopt the mid-point parameterization as it is the
standard chosen within the Euclid collaboration. The observer is depicted by a (stable-diffusion generated)
cartoon of Euclid at the bottom.

the average of 𝐹 (𝒙) over the survey volume necessarily vanishes (Mattia and Ruhlmann-Kleider,
2019).

We can now write the genera expression we will use for estimating the power spectrum in terms of
the true galaxy field as

𝑃ℓ (𝑘) =
∫

𝑊
(
𝒙1

)
𝑊

(
𝒙2

) 〈
𝛿g

(
𝒙1

)
𝛿g

(
𝒙2

)〉
𝑒
−i𝒌 ·(𝒙2−𝒙1)

× Lℓ
(
𝒌̂ · 𝒙m

)
d3
𝑥1 d3

𝑥2
dΩ𝑘
4𝜋

+ 𝑃IC,

(2.24)

where 𝑃IC corresponds to the contribution from the integral constraint term and the angular brackets
represent ensemble average as usual.

2.1.3 FOTO Multipole Moments

Having introduced the YB estimator, we can now finally try to assess the impact of the observer
velocity term on the power spectrum multipole moments. In §1.4, we found that the observed density
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field can be decomposed such that the impacts of the relativistic distortions can be isolated

𝛿obs(𝒙) = 𝛿com(𝒙) +
𝛼o(𝑥)
𝑥

𝒗o.𝒙̂

𝑎𝐻
(2.25)

into a single function defined as

𝛼o(𝑥) ≡ 2(1 − Q) − 𝑥𝐻

𝑐(1 + 𝑧) E + 𝑥𝐻

𝑐(1 + 𝑧)

[
3 − 1 + 𝑧

𝐻

d𝐻
d𝑧

]
. (2.26)

We will now plug this observed density field 𝛿𝑜𝑏𝑠 into the window-convolved Yamamoto Bianchi
estimator from Eq. (2.19) (ignoring the integral constraint term) and write

𝑃ℓ (𝑘) =
∫

𝑊
(
𝒙1

)
𝑊

(
𝒙2

) 〈
𝛿obs

(
𝒙1

)
𝛿obs

(
𝒙2

)〉
𝑒
−i𝒌 ·(𝒙2−𝒙1)Lℓ

(
𝒌̂ · 𝒙m

)
d3
𝑥1 d3

𝑥2
dΩ𝑘
4𝜋

(2.27)

To compute the power spectrum as prescribed by Eq. (2.19), we still need to perform pair-counting
which scales poorly as O (𝑛2) and serves as a severe computational bottleneck. If we can employ
Fast-Fourier Transform (FFT) algorithms, which scale as O(𝑛 log 𝑛), we can achieve massive efficiency
gains (discussed later in §2.1.4). The applicability of FFTs, however, is contingent on whether the
spatial integrals in Eq. (2.19) can be separated into two distinct terms. Unfortunately, the L( 𝒌̂ .𝒙̂𝒎)
term manifestly prevents such a splitting of the integrand. To overcome this bottleneck, numerical
implementations of the YB estimator often modify the argument of the Legendre polynomial in
lines with the approximation stating 𝒙̂𝑚 ≈ 𝒙̂1,2 (Yamamoto, Nakamichi et al., 2006). This, in-effect,
substitutes the mid-point LOS vector with a vector pointing towards one of the objects in the galaxy
pair. Though the resulting calculation is made more convenient, it should be noted that the approximate
statistic we compute is a different quantity altogether (which only reduces to Eq. (2.19) when the
galaxy pairs considered remain sufficiently close).

If we ignore potential cross-correlations between 𝛿com and 𝑣o by excluding the local universe
(𝑧 < 0.05) (Nadolny et al., 2021) from our analysis, we can write the observed power spectrum 𝑃obs,ℓ
as a sum of contributions from comoving density field 𝑃com,ℓ and kinematic dipole induced effects
(Elkhashab, Porciani and Bertacca, 2024)

𝑃obs,ℓ (𝑘) = 𝑃com,ℓ (𝑘) + 𝑃dip,ℓ (𝑘). (2.28)

Focusing on the dipole distortions, we find

𝑃dip,ℓ (𝑘) =
2ℓ + 1
𝐴

∭
𝐵1𝐵2

(
𝒗o · 𝒙̂1

) (
𝒗o · 𝒙̂2

)
e𝑖𝒌 ·(𝒙1−𝒙2)Lℓ

(
𝒌̂ · 𝒙̂2

)
d3
𝑥1 d3

𝑥2
dΩ𝑘
4𝜋

(2.29)

where 𝐵𝑖 ≡ 𝑛̄𝑖𝛼o,i /(𝑥𝑖𝑎𝑖𝐻𝑖) contains the FOTO effect and the normalization constant is 𝐴 =∫
𝑛̄

2(𝑥)𝑑3
𝑥. Here, we have set the weights as 𝑤 = 1 for convenience but, as mentioned earlier, this

affects only the covariance by construction (and not the features of signal itself).
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We now split the integral in two parts by

𝑃dip,ℓ (𝑘) =
2ℓ + 1
𝐴

∫ [∫
𝐵1

(
𝒗o · 𝒙̂1

)
e𝑖𝒌 ·𝒙1 d3

𝑥1

]
[∫

𝐵2
(
𝒗o · 𝒙̂2

)
e−𝑖𝒌 ·𝒙2Lℓ

(
𝒌̂ · 𝒙̂2

)
d3
𝑥2

]
dΩ𝑘
4𝜋

.

(2.30)

To make progress with simplifying this expression further, we will require four mathematical identities
that we shall now introduce.

1. Plane-Wave Expansion describes planar waves as a superposition of spherical waves

ei𝒌 ·𝒙
=

∑︁
ℓ

(2ℓ + 1)iℓ 𝑗ℓ (𝑘𝑥)Lℓ ( 𝒌̂ · 𝒙̂). (2.31)

It was famously used to describe sound waves by Strutt (1877) (better known as the third Baron
of Rayleigh), and then, by Sommerfeld (1896) to describe electrodynamic diffraction5. The
plane wave expansion is still ubiquitously found in the study of nuclear scattering (Mehrem,
2011). Using this identity introduces radial integrals of spherical Bessel functions 𝑗𝑙 (𝑘𝑟) in our
calculations.

2. Orthogonality of Legendre Polynomials on the Sphere can be stated as∫
Lℓ ( 𝒒̂ · 𝒙̂)Lℓ′ ( 𝒌̂ · 𝒙̂)dΩ𝑥 =

4𝜋
2ℓ′ + 1

Lℓ′ ( 𝒒̂ · 𝒌̂)𝛿K
ℓℓ

′ . (2.32)

This ensures that integrating the product of two Legendre polynomials over all directions on a
two-sphere cancels out to zero — unless, the two have the same multipole index ℓ.

3. Product-to-Sum Identity states that the product of two multipole moments at any given location
on the two-sphere can be written re-expressed as a weighted sum of finitely many Legendre
polynomials,

Lℓ ( 𝒒̂ · 𝒙̂)Lℓ′ ( 𝒒̂ · 𝒙̂) =
ℓ+ℓ′∑︁
𝑛=ℓ−ℓ′

(
ℓ ℓ

′
𝑛

0 0 0

)2

(2𝑛 + 1)L𝑛 ( 𝒒̂ · 𝒙̂). (2.33)

Interestingly, the weights corresponding to the different polynomial orders 𝑛 features a Wigner-3j
matrix (Wigner, 1993), which is otherwise famous among physicists as a (nicer) alternative to
Clebsch-Gordan Coefficients. The 3j matrix is a mathematical object with rich symmetries,
recursion relations and vanishing criteria (Pain, 2020; Hopersky, Nadolinsky and Koneev, 2025),
which abstracts away some underlying complexity of dealing with the multipole structure.

4. Radial Moment of a basis projection is defined as

𝐼𝑛 ≡
∫

𝑥
2
𝐵1 𝑗𝑛 (𝑘𝑥)d𝑥, (2.34)

5 Coincidentally, in the field of optics, the Rayleigh-Sommerfeld Diffraction is also popularly abbreviated as RSD.
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and it describes how efficiently the FOTO signal (by which I mean 𝛼o inside 𝐵1) couples to a a
spherical Bessel basis of order 𝑛 (Elkhashab, 2024).

For the actual solution, we begin by focusing on the integrand in the first square bracket of Eq.
(2.30) (Elkhashab, 2024)∫

𝐵1
(
𝒗o · 𝒙̂

)
ei𝒌 ·𝒙 d3

𝑥 =
∑︁
ℓ
′

(
2ℓ′ + 1

)
iℓ

′
∫

𝐴
(
𝒗o · 𝒙̂

)
𝑗ℓ′ (𝑘𝑥)Lℓ′ ( 𝒌̂ · 𝒙̂)dΩ𝑥 d𝑥

= 𝑣o

∑︁
ℓ
′

(
2ℓ′ + 1

)
iℓ

′
𝐼ℓ′

4𝜋
2ℓ′ + 1

Lℓ′
(
𝒗̂𝑜 · 𝒌̂

)
𝛿

D
ℓ
′1

= 4𝜋i𝑣o𝐼1L1

(
𝒗̂𝑜 · 𝒌̂

)
.

(2.35)

And, for the second square bracket containing the Legendre polynomial term, we write∫
𝐵2

(
𝒗o · 𝒙̂

)
e−i𝒌 ·𝒙Lℓ ( 𝒌̂ · 𝒙̂)d3

𝑥 =∑︁
ℓ
′

(
2ℓ′ + 1

)
(−i)ℓ

′
𝐼ℓ′

∫ (
𝒗̂𝑜 · 𝒙̂

)
Lℓ′ ( 𝒌̂ · 𝒙̂)L𝑙 ( 𝒌̂ · 𝒙̂)dΩ𝑥

=𝑣o

∑︁
ℓ
′

(
2ℓ′ + 1

)
(−i)ℓ

′
𝐼ℓ′

∫ (
𝒗̂𝑜 · 𝒙̂

) ℓ+ℓ′∑︁
𝑛=ℓ−ℓ′

(
ℓ ℓ

′
𝑛

0 0 0

)2

(2𝑛 + 1)L𝑛 ( 𝒌̂ · 𝒙̂)dΩ𝑥

=𝑣o

∑︁
ℓ
′

ℓ+ℓ′∑︁
𝑛=ℓ−ℓ′

(
ℓ ℓ

′
𝑛

0 0 0

)2 (
2ℓ′ + 1

)
(2𝑛 + 1) (−i)ℓ

′
𝐼ℓ′

∫
L1

(
𝒗̂𝑜 · 𝒙̂

)
L𝑛 ( 𝒌̂ · 𝒙̂)dΩ𝑥

=𝑣o

∑︁
ℓ
′

ℓ+ℓ′∑︁
𝑛=ℓ−ℓ′

(
ℓ ℓ

′
𝑛

0 0 0

)2 (
2ℓ′ + 1

)
(2𝑛 + 1) (−i)ℓ

′
𝐼ℓ′

[
4𝜋

2𝑛 + 1
L𝑛

(
𝒗̂𝑜 · 𝒌̂

)
𝛿

D
𝑛1

]
=4𝜋𝑣o

∑︁
ℓ
′

(
ℓ ℓ

′ 1
0 0 0

)2 (
2ℓ′ + 1

)
(−i)ℓ

′
𝐼ℓ′L1

(
𝒗̂𝑜 · 𝒌̂

)
.

(2.36)

On substituting Eq. (2.35)-2.36 back into Eq. (2.30), we get our final result as -

𝑃ℓ,dip(𝑘) =
2ℓ + 1
𝑁

𝑣
2
0

𝐻
2
0

∫ [
4𝜋𝑖𝐼ℓL1(v̂𝑜 · k̂)

]
×[

4𝜋
∞∑︁
ℓ
′
=0

(
ℓ ℓ

′ 1
0 0 0

)2

(2ℓ′ + 1) (−𝑖)ℓ
′
𝐼ℓ′L1(v̂𝑜 · k̂)

]
𝑑

2
Ω𝑘

4𝜋

=
16𝜋2(2ℓ + 1)

3
𝑣

2
0

𝐻
2
0

𝐼1
𝑁

∞∑︁
ℓ
′
=0

(
ℓ ℓ

′ 1
0 0 0

)2

(2ℓ′ + 1) (−1)ℓ
′
(𝑖)ℓ

′+1
𝐼ℓ′ .

(2.37)

36



2.1 Two-Point Statistics

The first few multipoles were given by Elkhashab, Porciani and Bertacca (2024) as

𝑃0,dip(𝑘) =
16𝜋2

3
𝑣

2
0

𝐻
2
0

𝐼
2
1 (𝑘)
𝑁

, (2.38)

𝑃1,dip(𝑘) =
16𝜋2

𝑖

3
𝑣

2
0

𝐻
2
0

𝐼1(𝑘) [𝐼0(𝑘) − 2𝐼2(𝑘)]
𝑁

, (2.39)

𝑃2,dip(𝑘) = −16𝜋2

5
𝑣

2
0

𝐻
2
0

𝐼1(𝑘) [2𝐼1(𝑘) + 3𝐼3(𝑘)]
𝑁

, (2.40)

𝑃3,dip(𝑘) =
16𝜋2

𝑖

7
𝑣

2
0

𝐻
2
0

𝐼1(𝑘) [−3𝐼2(𝑘) + 4𝐼4(𝑘)]
𝑁

, (2.41)

𝑃4,dip(𝑘) = −16𝜋2

9
𝑣

2
0

𝐻
2
0

𝐼1(𝑘) [4𝐼3(𝑘) + 5𝐼5(𝑘)]
𝑁

. (2.42)

The odd-multipoles in our results come out to be imaginary as a consequence of the inherent asymmetry
in our estimator. Although the first square bracket term is symmetric under reflections 𝒌 → −𝒌, the
second square bracket is symmetric only for even multipoles and anti-symmetric for odd multipoles.
Consequently, Eq. (2.37) has real and imaginary components which average out to zero for odd and
even multipoles respectively (Elkhashab, Porciani and Bertacca, 2024).

To visualize these contributions, Fig. 2.3 shows the power spectrum multipoles estimated with
the Yamamoto–Bianchi estimator under different assumptions (real-space, Kaiser limit, relativistic
effects, and observer velocity). While the example here is for a Euclid-like survey mock, the figure’s
purpose at this stage is pedagogical: to illustrate how redshift-space distortions redistribute power
across multipoles. A detailed discussion about the generation of these Euclid like mocks will follow
in §2.2 and the statistical inferences from these signal measurements in 3.1. A clearer view of the
analytic predictions about the FOTO signal in such Euclid-like mocks is presented in Fig. 2.4.

2.1.4 FFT Implementations

The theoretical FOTO multipoles derived in the previous subsection contain no stochasticity. However,
to test these predictions against real or mock data, we must estimate the FOTO signal from discretely
sampled galaxy catalogs. For this, we rely on Fast Fourier Transforms (Heideman, D. H. Johnson and
Burrus, 1985), which offer computational efficiency and, consequently, scale well for large survey
catalogs.

Before running FFT-based estimators, objects in survey data must first be situated on a regular grid
to produce a discretized density field. One convenient method to achieve this is the Cloud-in-Cell
(CIC) algorithm (Hockney and Eastwood, 2021) which spreads the contribution of each particle’s
mass across a small cubic ‘cloud’ centered around it (i.e. on adjacent grid points). CIC can be neatly
expressed as a convolution of particle positions with a window function that linearly interpolates
particle mass at 𝒙𝑝 to the grid vertices 𝒙𝑔

𝜌(𝒙𝑔) =
∑︁
𝑝

𝑚𝑝𝑊CIC
(
𝒙𝑔 − 𝒙𝑝

)
, with 𝑊CIC(𝒓) =

∏
𝑖=𝑥,𝑦,𝑧

𝑤CIC(𝑟𝑖), (2.43)
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Figure 2.3: Power spectrum multipoles estimated for a Euclid like survey using a Yamamoto-Bianchi estimator.
The different curves represent estimates for different catalogs R (real-space with no distortions), G (all relativistic
effects in CMB rest frame) and O (all relativistic effects with peculiar velocity). In real-space, only the monopole
is non-zero. Peculiar velocity of galaxies introduce power in ℓ = 2 and ℓ = 4 (Eq. 2.13) and observer peculiar
velocity leaves an imprint across all multipoles on the largest scales (Eq. (2.37)). The inset figures zoom into
the bandwidth relevant for the FOTO signal. Barring the FOTO signal, monopole term remains the dominant
contribution to the total power. Note that 𝑘𝑃(𝑘) is plotted (instead of 𝑃(𝑘)) and, hence, the shape of the curves
is artificially lifted for larger values of 𝑘 .

Figure 2.4: Theoretical expectations for FOTO effect computed for a Euclid-like survey in a redshift bin
of 𝑧 ∈ [0.9, 1.8], assuming an observer velocity of 𝑣o = 369km/s. The even multipoles appear with a real
part while for the odd multipoles only the imaginary component survives. However, this only reflects the
anti-symmetry of our estimator. We can easily choose a different convention which leads to imaginary even
multipoles and real odd multipoles. The theoretical expectations for the FOTO signal are compared with
measurements of simulated mocks in §3.
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where the 1D CIC kernel is
𝑤CIC(𝑥) =

1
Δ𝑥

{
1, |𝑥 | < 1

2Δ𝑥

0, otherwise (2.44)

and Δ𝑥 is the grid spacing. The final density field is then obtained by summing contributions from all
particles.

Compared to the simpler Nearest Grid Point (NGP) method in which each particle assigns its entire
mass to the nearest grid point, CIC scheme provides a smoother interpolation and reduces aliasing
effects. Aliasing arises when discretely sampled data are used to approximate a continuous field,
particularly when structures vary on scales smaller than the sampling frequency. This can introduce
spurious low-frequency features not present in the original signal. A familiar example from image data
processing is the occurrence of Moiré patterns6. Higher-order interpolation schemes also exist, such as
the Triangular Shaped Cloud (TSC) kernel and Piecewise Cubic Spline (PCS) methods (Hockney and
Eastwood, 2021). These alternatives suppress numerical artifacts even more effectively, particularly at
small scales. However, the improvement in accuracy at larger scales (relevant for relativistic effects) is
marginal. Thus, CIC offers an optimal balance between computational efficiency and interpolation
fidelity for our purposes.

We apply the CIC technique on the particle positions listed in galaxy and randoms catalogs to
estimate the number density fields 𝑛̂𝑔 and 𝑛̂𝑟 . This allows us to define the FKP field from Eq. (2.15)
at all points on a discretized coordinate grid. Now, finally, we can use an FFT algorithm on the FKP
field to get its Fourier conjugate in the 𝑘-space. This resulting 𝑘-space field is the three-dimensional
power spectrum monopole 𝐹0(𝒌). To make the inference calculations in Chapter 3 more manageable,
we summarize the field statistics into a one-dimensional power-spectrum by calculating weighted
averages along spherical shells of varying radii in the 𝑘-space as follows (Scoccimarro, 2015)

𝑃0(𝑘) =
1
𝐴

[∫
𝑑Ω𝑘

4𝜋
��𝐹0(k)

��2 − 𝑃
SN
0

]
(2.45)

where 𝐴 is the standard normalization constant and 𝑁0 is the shot noise obtained by self-pairs in the
first term.

The method described above was introduced by Scoccimarro (2015) but a slightly different FFT
implementation to compute power spectrum multipoles was proposed by Hand et al. (2017). They
report in their analysis (Hand et al., 2017) that by expanding every Legendre polynomial into its
spherical harmonic basis, we can avoid some redundant computations. This brings down the number of
FFTs required for computing the ℓth multipole from (ℓ + 1) (ℓ + 2)/2 (as in Cartesian decomposition of
Scoccimarro (2015) and Bianchi et al. (2015)) to 2ℓ + 1. At higher multipole moments, this difference
can become substantial. For example, in computing nine even multipoles (ℓmax = 16), the algorithm by
Hand et al. (2017) offers a factor of 525/153 ≈ 3.4 improvement. In this dissertation, we restrict our
analysis to ℓmax = 4 and, hence, do not describe the alternate approach in greater detail. We do note,
however, that several standard libraries for computing power spectrum multipoles (like pypower7 and
nbodykit8) utilize the more efficient FFT implementation using spherical harmonic decompositions.

6 For further discussion in the context of rendering and sampling theory, see Pharr and Humphreys (2010)
7 See pypower documentation: github.com/cosmodesi/pypower
8 See nbodykit documentation: nbodykit.readthedocs.io
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2.2 Generating Relativistic Mocks
Simulations play a doubly special role in cosmology, more so than in most other branches of
physics. The first role, familiar across computational physics, is to help in understanding the
macroscopic effects of analytically intractable micro-dynamics. It is practically impossible to capture
the seemingly immeasurable complexities of billions of particles interacting gravitationally (even
with electromagnetism and gas-dynamics absent from the mix). This forward-modeling of theoretical
predictions is common in many domains of astrophysics. Unlike, however, the study of pulsars or
accretion disks, cosmology has an extra role for simulations i.e. instantiating many realizations of
the same underlying physics. Since we observe only one universe, we rely on a simulated ensemble
to supplement predictions with a quantization of the corresponding covariance. We will have more
to say about covariance later in Chapter 3 but, for now, we note the following trade-off. The more
sophisticated a simulation is, i.e. the more of our theoretical machinery it attempts to forward model,
the more computationally demanding it tends to become. Conversely, the more simulations we can
generate, the better our understanding of the covariance becomes. This means, for finite computational
resources (or, in AI industry slang compute), we must find a balance between the number of simulations
and their fidelity.

The workflow adopted in this project for studying FOTO multipoles is based on the LIGER method,
which strikes a pragmatic middle ground. The synthetic universes we construct in silico are detailed
enough to capture the key relativistic effect (FOTO), yet far less resource-intensive than state-of-the-art
multi-physics simulations. In fact, as I will explain, our pipeline bypasses the need for any full
simulations at all (let alone general relativistic ones). This is achieved through a three-step procedure
that circumvents reliance on resource intensive numerical solvers.

1. Generating non-general-relativistic initial conditions for 𝑁-body simulations using Einstein-
Boltzmann solvers at different values of redshift (§2.2.1). This is done using MonophonIC9

code (Hahn, Michaux et al., 2020) and it by-passes the need to perform 𝑁-body computations.

2. Adding relativistic shifts to the otherwise Newtonian particle positions with LIGER (§2.2.2).
This substitutes the need for numerically solving Einstein field equations with the much simpler
perturbative corrections derived in §1.3.3.

3. Painting luminous tracers with a biasing relation onto the dark matter distribution with
Buildcone (§2.2.3). This avoids the need to work with hydro-simulations of baryonic matter.

We will now go through each of these three steps in more detail.

2.2.1 MonophonIC (MUSIC2) Newtonian Snapshots
At the heart of any initial condition generation code is the cosmological transfer function. A transfer
function is the product of growth functions of different structures and the primordial time-independent
9 Hahn and Abel (2011) originally developed a code called MUSIC which provided MUlti-Scale Initial Conditions used in

galaxy formation studies. Overtime, the community moved towards using second and third order in linear perturbation
theory while solving the Einstein-Boltzmann equations for structure formation seeds. So, Hahn, Michaux et al. (2020)
created a sequel to the original code called MUSIC2 but, since the intended use case then was cosmology studies (as
opposed to galaxies), they chose to skip on the multi-scale feature. This explains the ‘mono’ in the alternate name of
MUSIC2 i.e. MonophonIC.
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Figure 2.5: LIGER method workflow used in this thesis. MonophonIC generates Newtonian 𝑁-body snapshots
from Einstein–Boltzmann-consistent initial conditions; after conversion to Gadget-2 format these snapshots
are processed by LIGER, which finds light-cone intersections and performs line-of-sight integrations to build
fully relativistic dark-matter catalogs. Buildcone performs baryon painting based on survey functions to
obtain a galaxy-overdensity map, which feeds the Statistics step (i.e. computing power-spectrum multipoles,
signal-to-noise ratio of the FOTO signal, Bayesian inference for observer velocity, etc.).

master function around recombination. This can be computed at various redshifts by solving the
underlying Einstein-Boltzmann equations and the specialized routines which can quickly integrate
such equations for a given cosmological model are, naturally, called Einstein-Boltzmann Solvers.
Some standard solvers currently in use by the community are CAMB (A. Lewis, Challinor and Lasenby,
2000), CLASS (Lesgourgues, 2011) and DISCO-DJ (Hahn, List and Porqueres, 2024) (along with their
many EFT and modified gravity variants (Hu et al., 2014; Wang, 2024)). Other EB solvers, which
are now out-dated and no longer maintained, include CMBFAST (Seljak and Zaldarriaga, 1999) and
CMBEASY (Doran, 2005).

For studying the FOTO multipoles, we save 15 transfer function files corresponding to 15 redshift
snapshots binned equidistantly in the scale factor (𝑎 = 1 / (1 + 𝑧)). The redshifts range from 0.0 to 1.8.
These are then provided to MonophonIC which we configure to generate random particle positions in a
box of length 7.5 Gpc/h tiled with 6503 grid cells (thereby providing a grid resolution of 11.5 Mpc/h).
Using the transfer function and a common seed for pseudorandom-number generation, MonophonIC
instantiates 15 different catalogs of dark matter particle positions and velocities at each of the desired
redshifts. These catalogs are saved in .hdf5 files, which we convert to GADGET2-styled .dat binaries
(Springel, 2005) using a python program for compatibility with LIGER’s I/O capability. This process is
repeated using different random number seeds to generate 125 realizations of Newtonian cosmological
evolution. The next step is to create a past-lightcone for an observer in the box and introduce relativistic
distortions.

2.2.2 Light Cones in General Relativity (LIGER)

The LIghtcones with GEneral Relativity (LIGER)10 method takes the progressive Newtonian snapshots
from the previous step and stitches them together to form the past light cone of an observer. In this
subsection, we present a brief sketch of the main computations that LIGER performs.

The first step is to translate the quantities defined in the N-body data to quantities required in the

10 See LIGER documentation: gitlab.com/cosmology-aifa/ligerv2
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computation of the shift equations. Choosing to derive our analytic results in §1.4 in Poisson gauge
really considerably simplifies the interpretation of the N-body output, which is generally presented
in the synchronous comoving gauge. Quantities like position, velocity and potential can be directly
equated between the two gauge choices and, hence, the Poisson equation can be written as

∇2
𝜑 =

3𝐻2
0Ωm
2𝑎

𝛿SC. (2.46)

To compute the relativistic corrections, we need to know the value of potential and its first and second
(spatial and temporal) derivatives everywhere in our simulation box. These are calculated by first
computing overdensity fields using the CIC technique described in §2.1.4. Numerically, it involves
(Elkhashab, Porciani and Bertacca, 2024)

𝛿sim

(
𝒙 𝑗 , 𝑧𝑚

)
=

1
𝑛̄sim

∑︁
𝑖

𝑊CIC

(
𝒙 𝑗 − 𝒓𝑚𝑖

)
− 1, (2.47)

where 𝑛̄sim = 𝑁sim/𝑉sim is the average particle density of the input simulation, the 𝑚 in superscript and
subscript indicates an association with the 𝑚th snapshot and the discrete position vectors 𝒙 𝑗 represent
grid cell coordinates. The Poisson equation is solved using the Faster Fourier Transform in the West11

(FFTW) algorithm (Frigo and S. G. Johnson, 2005) . The spatial derivatives of the potential can
also be solved in the Fourier space using spectral differentiation (Canuto, 2007) and the temporal
derivatives are computed using standard Finite Difference Method. This provides us with all the terms
required to compute the shifts as per Eq. (1.60).

While computing the coordinate transformations, we also need to integrate certain terms along
the path of the photon to account for effects like late-time ISW and gravitational lensing. One could
explicitly ray-trace photon geodesics from the source to the observer for every object on the light-cone
but doing so would be wasteful. For two-point statistics, a demonstrably sufficient alternative to
ray-tracing is the Born approximation (Ferlito et al., 2024). Accordingly, we compute the line-of-sight
integrals along straight lines (as opposed the lensed null-geodesics) using the Fast Voxel Traverse
(FVT) algorithm (Amanatides and Woo, 2023) that detects the cells in the simulation grid which are
intersected by a particular LOS and sums up contributions to potential and its derivatives from those
cells.

Another caveat in computing the line-of-sight integrals is that the limit of the integral is supposed
to be the redshift space-position which is unknown prior to the computation of the shifts. This leads
to a circularity12. Such problems arise often in computational physics and can generally be resolved
by writing a code which relaxes the solution iteratively until convergence. In practice, one performs
the following steps.

1. Compute the redshift position using only the local terms in the shift equations

2. Evaluate integral terms up-to the local-term shifted position from Step 1.

3. Apply integral shifts to the particle position
11 See FFTW documentation: www.fftw.org
12 This situation would constitute a ‘Catch-22’ in Joseph Heller’s sense, where each precondition blocks the other. In our

case, one needs the redshift space position to compute the integrals but to compute the integrals one needs the redshift
space positions
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4. Repeat until convergence

Borzyszkowski, Bertacca and Porciani (2017) report that subsequent relaxation iterations do not lead
to any significant change in the particle positions and that performing the aforementioned steps twice
is sufficient. The integrals are only performed for those particles that have world-lines intersecting
the past lightcone of a chosen observer in the simulation box. This ensures we compute shifts for
only those particles which are visible to a given observer in the celestial sphere. Since we have a low
resolution along the redshift axis (only 12 snapshots), LIGER uses a cubic interpolation to determine
the value of the calculated quantities at the intersection point of the photon world-line and the observer
lightcone.

The configuration file for LIGER in this study resembles the configuration used for MUSIC2 i.e. a
box size of 7500 Mpc/h with 6503 grid cells. The observer is situated at the center of the box and
has a peculiar velocity of 𝑣o = 369 km s−1 which is calibrated to the Planck measurement of the
CMB dipole (Planck Collaboration et al., 2020). For each set of MUSIC2 realization (i.e. snapshots
sharing the same random seed but varying only in their redshifts), LIGER generates the following
kinds of output catalogs (listed below with two naming conventions corresponding to the code and the
formalism) with various effects ‘switched on’ progressively –

1. real-space (R): No redshift space distortions are computed. The output only stitches together
snapshots at various redshifts to detect which objects lie on an observer’s past lightcone and
should be visible in a hypothetical survey.

2. vRSD (V): Only redshift space distortions arising from radial peculiar velocity components are
computed and the particles on the past lightcone are shifted accordingly.

3. vRSD_obs: Same as vRSD but observer’s motion is also considered while calculating the
Doppler shifts.

4. GRRSD (G): The entire suite of general relativistic redshift space distortions are computed
including effects arising from lensing and ISW. However, the observer is considered to be at rest
with respect to the CMB frame.

5. GRRSD_obs (O): The complete suite of general relativistic redshift space distortions for
an arbitrarily moving observer. This is the closest representative of the observed galactic
over-density at linear order.

In later sections, we will occasionally use the calligraphy letters G and O to represent GRRSD and
GRRSD_obs catalogs respectively. For example, 𝑃G and 𝑃

O can represent the power spectrum for
cosmic rest frame and observer rest frame respectively (with Δ𝑃 ≡ 𝑃

O − 𝑃
G representing the FOTO

signal).

2.2.3 Buildcone Routine
It is both a convenient and an inconvenient feature of the ΛCDM model that baryons (the ordinary
matter, well understood from gauge theoretic perspective) contribute only a small amount to the large
scale gravitational dynamics of the universe. It is convenient because the regions where baryonic effects
become relevant, we need to involve further sophistication in our models, taking into account multi-
physics effects arising from the complex feedback of thermal and chemical dynamics (Vogelsberger,
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Marinacci et al., 2019; Vogelsberger, Genel et al., 2014; Schaye et al., 2023). A negligible baryonic
contribution on the LSS affords us the liberty to ignore these additional complications and focus
primarily on the dynamics of a gravitating but otherwise non-interacting component i.e. Dark Matter.
It is inconvenient, however, because the dominant matter component in cosmological physics is
currently impenetrable to direct observational or experimental probing. The galaxy biasing procedures
(Desjacques, Jeong and Schmidt, 2018) aim to model and understand the connection that allows
inferences to travel from observations of luminous baryonic tracers to the underlying dark matter
distribution — not entirely unlike the usage of polystyrene beads to image velocity fields of surface
waves in liquids (Roux, Meunier and Mari, 2023).

To perform ‘Baryon Painting’ (i.e. post-processing DM data to capture the net effects of baryons),
we use the Buildcone (BC) routine (Borzyszkowski, Bertacca and Porciani, 2017). To understand
this procedure, we re-write Eq. (1.80) as

𝛿g, s = (𝑏 − 1)𝛿SC + 𝛿s + E𝛿 ln 𝑎 + Q(M − 1) (2.48)

where 𝛿SC is the overdensity in the simulation gauge (i.e. MUSIC2 output) and we define

𝛿s ≡ 𝛿SC +
(
𝜕0H
H2 + 2𝑐

𝑥H

)
𝛿 ln 𝑎 + 𝜙e − 2𝜓e +

(
𝜕0𝜙

)
e

H + 3H𝜙𝑣

− 1
H

[
𝑛
𝑖
𝜕𝑖

(
𝑛
𝑗
𝑣 𝑗

)]
e
+ 2
𝑥

∫ 𝑥

0
(𝜙 + 𝜓)d𝑥 − 2𝜅.

(2.49)

We assume that the redshift dependence of linear bias 𝑏, magnification bias Q and evolution bias E are
defined by the survey and, henceforth, collectively refer to them as survey functions. The remaining
terms in the Eq. (2.48) (𝛿SC, 𝛿s, 𝛿 ln 𝑎 and M), can be constructed from the LIGER and MUSIC2
output. The next step, then, is to compute a galaxy number density field that enforces the overdensity
from Eq. (2.48) at each cell center by evaluating

𝑛g,𝑠

(
𝒙 𝑗

)
= 𝑛̄g, s

(
𝒙 𝑗

) [
1 + 𝛿g,𝑠

(
𝒙 𝒋

)]
, (2.50)

where 𝑛̄g,s is the average background comoving number density of the survey. Finally, when we
estimate the power spectra, we randomly scatter as many objects around each grid point inside the
associated cell, as prescribed by Eq. (2.50) to subdue the artificial grid-like structure of our output
data.

Survey Functions

In this study, we utilize survey functions for two different kinds of surveys. First, we consider the
futuristic Square Kilometer Array Observatory (called SKAO2) that uses HI as its primary baryonic
tracer. Second, we consider a Euclid-like survey for deeper redshift bins using H𝛼 tracers. These
survey functions are adopted from Maartens et al. (2021) and plotted in Fig. 2.6.

The predicted survey functions for Euclid Wide Spectroscopic Survey come from Model 3 of
Pozzetti et al. (2016) where a population of H𝛼 tracers is characterized by a redshift dependent
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Figure 2.6: Survey functions for SKAO2-like and Euclid-like surveys plotted according to the prescription by
Maartens et al. (2021). These functions, with the exception of the evolution bias E for HI tracers, are used to
create mock galaxy catalogs. The evolution bias for HI tracers fails self-consistency test and, hence, a differently
calibrated function is utilized for the final mocks.

luminosity function

Θ(𝐿, 𝑧) 𝑑𝐿 = 10−2.7
(
𝐿

𝐿∗

)−1.4
exp

[
− 𝐿

𝐿∗(𝑧)

]
𝑑𝐿

𝐿∗(𝑧)
(2.51)

where
log10

[
𝐿∗(𝑧)
42.6

]
= −𝑐(𝑧 − 2.2)2

. (2.52)

Thus, the average number density of tracers for a flux-limited survey becomes

𝑛̄𝑔,𝑠 (𝑥) =
∫ ∞

𝐿min (𝑥 )
Θ(𝑥, 𝐿) d𝐿, (2.53)

with 𝐿min(𝑥) = 4𝜋𝐷2
𝐿 (𝑥)𝐹lim and 𝐹lim = 2× 1016 erg cm−2 s−1. The magnification bias and evolution

bias can be computed using their definitions

𝑄(𝑧) = − 𝐿min
𝑛̄𝑔 (𝑧)

𝜕𝑛̄𝑔

𝜕𝐿min

����
𝐿min=𝐿lim (𝑧)

=
𝐿lim(𝑧) Θ(𝐿lim(𝑧), 𝑧)

𝑛̄𝑔 (𝑧)
(2.54)
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and

E(𝑧) = −
𝜕 ln

∫ ∞
𝐿min

Θ(𝐿, 𝑧) 𝑑𝐿
𝜕 ln(1 + 𝑧)

����
𝐿min=𝐿lim (𝑧)

= − 1
𝑛̄𝑔 (𝑧)

∫ ∞

𝐿lim (𝑧)

𝜕Θ(𝐿, 𝑧)
𝜕 ln(1 + 𝑧) 𝑑𝐿 .

(2.55)

Finally, for linear bias, we use
𝑏(𝑧) = 1.46 + 0.68(𝑧 − 1). (2.56)

In case of an SKA-like survey, with HI tracers, we begin by modeling the noise associated with a
flux density measurement of an interferometer (Maartens et al., 2021)

𝑆rms(𝜈) =
2𝑘𝐵𝑇sys(𝜈)

𝐴eff𝑁𝑑

√︃
2𝑡𝑝 (𝜈) 𝛿𝜈

, (2.57)

where 𝜈 = 𝜈21/(1+𝑧) with 𝜈21 = 1420 MHz, 𝑁𝑑 = 70, 000 is the number of dishes, system temperature
𝑇sys (instrument + sky) is modeled as

𝑇sys = 𝑇rec + 60
( 𝜈

300 MHz

)−2.5
K (2.58)

with 𝑇rec = 15 K, 𝐴eff = 0.8× (𝜋/4)𝐷2
𝑑 is the effective area (with 0.8 representing aperture efficiency),

and 𝛿𝜈 = 103 Hz is the system channel width. The time per pointing,

𝑡𝑝 = 𝑡tot
𝜃

2
𝑏

Ωsky
, (2.59)

depends on the total integration time 𝑡tot = 3.6 × 107 s, the total survey area Ωsky = 30000 deg2 and
the effective primary beam (field of view) from the mosaicked sky (Santos et al., 2015)

𝜃
2
𝑏 =

𝜋

8

[
1.3 × 𝜆21(1 + 𝑧)

𝐷𝑑

]2
, (2.60)

where 𝐷𝑑 = 3.1 m is the dish diameter and 𝜆21 = 21 cm is the rest frame wavelength of the target
transition. With these quantities defined, we can write the detection limit as

𝑆𝑐 (𝑧) = 𝑆rms(𝑧)
𝑁cut
10

(2.61)

where 𝑁cut𝜎 represents a detection threshold with the parameter set to 𝑁cut = 10 for futuristic SKAO2
like survey. This allows us to compute the total number count of objects that are expected to be
detected which Yahya et al. (2015) present as a fitting formula,

𝑛𝑔 (𝑧, 𝑆𝑐) = 10𝑐1 (𝑆𝑐 ) 𝑧𝑐2 (𝑆𝑐 ) exp(−𝑐3(𝑆𝑐)𝑧) deg−2 (2.62)

with coefficients 𝑐𝑖 given in Table 3 of (Yahya et al., 2015). This number density is provided in per
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Figure 2.7: The classical and observed values of 𝛼 computed for Euclid-like and SKA-like survey functions over
a range of redshifts. This figure suggests that the amplitude of the FOTO signal should be higher for Euclid like
mocks. This observation is verified in the results discussed in the next chapter.

degree squared and can easily be converted into per cubic mega parsec. Based on this number density
of tracers, we can again compute evolution and magnification bias via the derivatives discussed earlier.
Lastly, for linear bias of SKAO2, we use a function of the form

𝑏(𝑧) = 𝑐4(𝑆rms(𝑧)) × exp (𝑧𝑐5(𝑆rms(𝑧)) (2.63)

with the coefficients from the same Table 3 of Yahya et al. (2015) as earlier. Fig. 2.6 provides a
summary of all the survey functions for H𝛼 and HI survey types.

Using these sets of survey functions, we can also evaluate the redshift evolution of 𝛼c, 𝛼o and Δ𝛼

(introduced in §1.4) that regulate the amplitude of the FOTO fluctuations. On the basis of Eq. (1.89),
Eq. (1.91) and Eq. (1.95), we have computed the evolution of alpha for both Euclid-like and SKA-like
survey functions. These results are presented in Fig. 2.7, on the basis of which we anticipate a greater
FOTO amplitude for Euclid-like mocks with a less steep redshift dependence compared to SKA-like
mocks. These predictions would be validated by the measurements in §3.1.

Consistency Check

Before performing any measurements or forecasts, it is important to consider the internal self-
consistency of these survey functions. From the definition of the evolution and magnification bias, we
can write (Maartens et al., 2021)

d ln 𝑛̄𝑔 (𝑧)
d ln(1 + 𝑧) =

1
𝑛̄𝑔 (𝑧)

d𝑛̄𝑔 (𝑧)
d ln(1 + 𝑧)

= 2𝑄(𝑧)
[

d ln 𝐿lim
d ln(1 + 𝑧)

]
+ E(𝑧)

= 2𝑄(𝑧)
[
1 + 𝑐(1 + 𝑧)

𝐻 (𝑧)𝑥(𝑧)

]
+ E(𝑧).

(2.64)
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Figure 2.8: Testing the self-consistency of the survey functions prescribed by (Maartens et al., 2021) based on
the Eq. (2.64). While the Euclid survey functions are self-consistent, the SKAO2 survey functions fail to satisfy
this consistency check. Thus, we modify the evolution bias by calibrating it with respect to the LHS of Eq.
(2.64) for our further analysis.

We can compute the LHS and RHS of Eq. (2.64) independently using the survey functions. Ideally, the
results from the two methods should coincide. However, on testing for this self-consistency condition,
we find that Euclid survey functions pass the consistency test but the SKA survey function described
in (Maartens et al., 2021) fails to satisfy this condition. Thus, for our later analysis, we implement
a prescription of (Maartens et al., 2021) only after altering the evolution bias for SKA such that it
satisfies the consistency condition in Eq. (2.64) is satisfied (see Fig. 2.8). 13

Next, we also check for the cross-consistency of the number density provided to Buildcone via
the survey functions and the number density of the sources in Buildcone’s output. This consistency
check is displayed in Fig. 2.9 for the two sets of survey functions mentioned in this work. As we
see, Buildcone faithfully implements the provided input number density for our choice of runtime
configuration.

The workflow described in this section — of generating Newtonian snapshots using Boltzmann
solvers, adding relativistic corrections using perturbative shifts and painting baryons on dark matter
distribution — yield the mock skies on which our Yamamoto-Bianchi estimator from §2.1.2 can
be applied and using which the FOTO multipole results of §. 2.1.3 can be studied. The verdict on
the detectability of the multipoles in various surveys is quantified in the forms of likelihoods and
covariances in §3.1.

13 It is important to note here that predicting survey functions is a delicate and challenging affair, over which the best practice
is to exercise cautious uncertainty. We shall discuss this again in §3.3.2.
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Figure 2.9: Comparing the number density provided to Buildcone via input survey functions with the number
density reconstructed from the output catalogs. For both survey types, our baryon painting procedure faithfully
reproduces the theoretical inputs. Vertical gray lines in the figure represent the tomographic redshift bins
considered in Fig. 3.1 and Fig. 3.2. The reason why the fluctuations appear to have higher frequency for H𝛼 is
that the redshift histograms were binned in equal sizes of redshift but are plotted in units of comoving distance.
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CHAPTER 3

Results

3.1 Comparing FOTO Measurements
Through Chapters 1 and 2, we assembled the formalism which facilitates both the modeling and
estimation of the multipole of FOTO signal. Let us now discuss the results of such an exercise. Beyond
checking for internal consistency of the code, these measurements would also convey useful statistical
information in the form of Frequentist signal-to-noise ratios (§3.1.1) and Bayesian inference posteriors
(§3.1.2).

First, we measure the FOTO signal across various tomographic redshift bins. During power spectra
estimation, we embed the catalog objects in a box of size 𝐿FFT = 2 × 104 Mpc/h. This is to ensure
that the fundamental mode of the box, which determines the largest measurable scales, remain small
enough for our use case i.e. 𝑘 𝑓 = 2𝜋/𝐿FFT = 0.3×10−3

ℎMpc−1. The results of FOTO measurements
for these bins for HI and H𝛼 survey are shown in Fig. 3.1 and Fig. 3.2 respectively. In both images,
the solid red line corresponds to the mean measurement across all realizations and the black dotted
curve represents the analytic model for FOTO signal. The noticeable agreement between mean and
model curves confirm that the analytic predictions match very well with the mock estimates for both
surveys, across all redshift bins and multipole orders. While the FOTO amplitude drops sharply for HI
survey type at higher redshifts, H𝛼 tracers carry a clear signal even in that farther redshift bins. We
also note that for H𝛼 tracers the higher multipoles maintain noticeable oscillations at smaller length
scales (i.e. larger values of 𝑘) even though the monopole signal is sharply suppressed on those scales.

From looking at the form of Eq. (1.4), we can see that the FOTO amplitude is integrated over
the redshift range (as opposed to being averaged over it). Thus, insofar as 𝛼 remains positive, the
signal would be more pronounced for wider redshift bins. Having shown the detectability of the
FOTO signal across these tomographic bins, we now define a wide bin over the entire of range of the
survey functions. From Fig. 2.7, we see that Euclid-like survey functions yield a consistently higher 𝛼
(and, consequently, higher FOTO amplitude) compared to SKA-like survey functions, despite the
latter survey type having a tracer number density that is orders of magnitude higher than the former.
Furthermore, a higher particle count can substantially bottleneck the power spectra estimation pipeline
during the density mesh creation and, especially, in the random catalog generation. Therefore, SKA
measurements, for our purpose, are both weaker and more resource demanding. Noting the distinct
advantage in doing the following, for the remainder of our analysis, we shall restrict our attention to
the FOTO estimation in the widest redshift bin of 𝑧 ∈ (0.9, 1.8) of Euclid-like mocks. The results
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Figure 3.1: Finger-of-the-Observer effect across various redshift bins and multipole orders for an HI type
redshift survey. The various panels demonstrate that the mean of mock measurements agree very well with the
model predictions. For this specific choice of survey functions, the FOTO signal decays quickly with increasing
redshift. The red shaded region represents 1𝜎 scatter of the FOTO measurement across different realizations.
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Figure 3.2: Similar to Fig. 3.1 but for H𝛼 survey type. Here, again, the measurements provide excellent
agreement with the model. Notably, the FOTO amplitude is higher than HI survey functions and remains
noticeable even in farther redshift bins. The oscillations happen at a higher frequency and higher multipoles
survive even at smaller scales where the monopole signal is dampened.
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of these measurements are shown in Fig. 3.3. We conclude this section by re-emphasizing that our
results in this section clearly demonstrate that the multipoles of FOTO signal can be satisfactorily
modelled and measured in the considered mock skies.

Figure 3.3: FOTO multipole measurements for widest Euclid bin allowed by our survey functions i.e. 𝑧 ∈
(0.9, 1.8). This is the highest amplitude for the FOTO signal that we can achieve with the smallest scatter
across various configurations. Thus, for the remainder of our statistical analysis, we will use the power spectrum
measurements of this redshift bin.

3.1.1 Signal-to-Noise Ratio
Given our measurements of the power spectrum in the relativistic mocks, we can try to quantify
whether the presence of the FOTO oscillations can in-principle be distinguished from a null-hypothesis
positing random fluctuations. One way of doing so would be to compute the ‘size’ of the FOTO effect,
called the signal-to-noise ratio (SNR), which is the first of the five MAGIC1 criteria for a statistically
principled argument (Abelson, 1995). Before moving towards a discussion of the FOTO signal in a
Bayesian framework and its role in velocity inference, let us study the impact of the higher multipoles
from a Frequentist framework and compute the SNR using systematically enumerated combinations
of FOTO multipoles.

A powerful method for estimating the SNR originates from Neyman-Pearson lemma2, that
demonstrates that a ratio of likelihoods can be the most powerful statistical test in certain contexts. If
we want to distinguish between a null hypothesis 𝐻0 (no FOTO contribution to the power spectrum)
and an alternative 𝐻1 (FOTO contribution present in the signal), then an optimal test statistic to
compute SNR is the ratio 𝜆 of their likelihoods,

𝜆𝑖 = 2 ln
L(𝑀G |𝑫𝒊

O)
L(𝑀O |𝑫𝒊

O)
, (3.1)

1 MAGIC is an acronym that stands for the criteria for making a compelling case with statistics that Robert Abelson proposed
in his book Statistics as Principled Arguments (Abelson, 1995). The various letters in MAGIC stand for – Magnitude
(how big is the effect), Articulation (how specific is the effect), Generality (how generally it applies), Interestingness (can
the effect change people’s beliefs on something important) and Credibility (what evidence is cited).

2 Interestingly, Jerzy Splawa Neyman (the former of the Neyman-Pearson pair) was a Polish statistician whose writings
introduced and popularized the modern concept of a confidence interval (Neyman, Scott and Shane, 1956).
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where the function L represents the likelihood of a model 𝑀G (the prediction of a clustering statistic
for an observer at rest with CMB) and a model 𝑀O (prediction of a clustering statistic for an
observer moving with our peculiar velocity), given the n-dimensional data vector containing a single
measurement of the clustering statistic of choice (i.e. the multipoles of the Yamamoto-Bianchi
estimator of the late universe 1D power spectrum). The likelihoods can be computed using the mean
signal 𝝁 and covariance matrix 𝑪 of the power spectrum measurements of catalogs O and G. These
statistics are defined in their usual form,

𝝁𝑎 = E[𝑫𝑎𝑖 ], (3.2)

𝑪𝑎 = E[(𝑫𝑎𝑖 − 𝝁𝑎) (𝑫
𝑎
𝑖 − 𝝁𝑎)

𝑇 ], (3.3)

for 𝑎 = G or 𝑎 = O. Assuming Gaussian errors, the likelihood of the dataset 𝑫 being drawn from
model 𝑀 with a signal 𝝁 can be written as

L(𝑀𝑎 |𝑫
O
𝑖 ) ∝

exp
{(
−1

2 (𝑫
O
𝑖 − 𝝁𝑎

)𝑇
𝑪−1
𝑎

(
𝑫O
𝑖 − 𝝁𝑎

)}
(2𝜋)𝑛/2 √︁

det(𝑪𝑎)
. (3.4)

Note that the likelihood defined for computing the Frequentist SNR is subtly different in its form from
the likelihood we will define during the Bayesian inference in Eq. (3.5). At this stage, we are neither
computing any analytic predictions for the models of 𝑀G or 𝑀O nor fitting for any model parameters 𝜽 .
Instead, the model here is simply an ensemble of measurements of the clustering statistic 𝑆 estimated
using mocks which all share a fixed value of cosmological parameters (including observer velocity)
and are characterized by their mean and covariance.

When we compute the distribution of likelihood ratios for the null and alternate hypothesis we get
two distributions 𝑃(𝜆 |𝐻0) and 𝑃(𝜆 |𝐻1) respectively and the distance between the peaks of these
distributions corresponds to signal-to-noise of the FOTO effect on the 1D matter power spectrum.
These distributions have been displayed in Fig. 3.4 for monopole-only and all-multipole cases3. We
now fit Gaussian curves to the distributions of these likelihood ratios to estimate the locations of and
distance between the two peaks. It is customary to express this distance in the units of the standard
deviation of the distributions in order to express the SNR in more data-motivated units. This, however,
presents us with a few options in how we wish to interpret the SNR of our clustering statistics.

In a highly idealized setting, one can posit that the standard deviation of 𝑃O
ℓ and 𝑃

G
ℓ

are similarly
sized and, thus, the distance between the peaks of 𝑃(𝜆 |𝐻0) and 𝑃(𝜆 |𝐻1) can be expressed in terms
of either 𝜎O or 𝜎G without any major difference. For instance, Elkhashab, Bertacca et al. (2024) find
this to be the case in their analysis of the correlation function for O and G type mocks. However, in
our study we find that the power spectrum multipoles for O type mocks display a much larger scatter
than power spectrum of G type mocks. Consequently, the scatter of likelihood ratios substantially
differ for null and alternate hypothesis. In such a case, the formal prescription is to use a combination
of the estimates of both standard deviations

√︃
𝜎

2
O + 𝜎

2
G . An alternate approach towards expressing

the SNR could instead be to assert that in practice we would only observe clustering statistics of O

3 We already note that the distribution of 𝜆G for the monopole-only case and the distribution of 𝜆O in all multipoles case
are not very Gaussian. In the absence of particular systematics, increasing the number of realizations should enhance the
Gaussianity of these likelihood ratio distributions.
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Figure 3.4: Comparing the likelihood ratios for the null hypothesis (Blue) of being at rest with the CMB frame
and the alternate hypothesis of observing FOTO effect (red) as computed for monopole-only and all-multipoles
cases. The figure suggests an increase in the SNR when higher multipole orders are considered for the null test.
The distance between the peaks of the histogram is expressed in terms of the standard deviation of 𝜆O .

type mocks (because we cannot turn-off the observer velocity relativistic effects in our data) and, thus,
the statistical information we compute should primarily be on the basis of 𝑪O and 𝜎O . For both
our Frequentist and Bayesian analysis, we will follow this principle and use only 𝑪O to compute the
likelihood. In this section, however, we present the results using all three conventions for defining
the distance between peaks of likelihood ratios i.e. using 𝜎O , 𝜎G and

√︃
𝜎

2
O + 𝜎

2
G . The reason for

presenting results from all three cases in Fig. 3.5 is to highlight the difference that choosing particular
conventions can lead to in terms of interpreting which combinations of the multipoles contain the least
and the highest SNR. When using only 𝜎O , the SNR is highest when we use all multipoles together
and enhances the monopole-only case of SNR = 2.8 to an SNR = 3.8 (yielding an improvement of
over 30%, which is what we would observe while studying the posterior widths in §3.1.2 and Fig.
3.7). Since the scatter in the clustering statistics of G type mocks is lower, using 𝜎G yields higher
numerical values for SNR but the trend reverses in comparison with the previous case. This could be
because, in absence of the FOTO signal, concatenating higher power spectrum multipoles for G may
only serve to increase the scatter. Lastly, notice that the top performing configuration changes from
the all-multipoles case for units of 𝜎O to a particular triple when using the units of

√︃
𝜎

2
O + 𝜎

2
G .

3.1.2 Bayesian Inference

While SNR is an indicative statistic, the dependence of the SNR-maximising combination on the
convention of which 𝜎 we use to define it indicates a limitation of the Frequentist approach for our
use case. A more decisive test for a signal’s usefulness is the extent to which it allows an inference
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Figure 3.5: Comparing SNR computed using all combinations of the first five power spectrum multipoles of the
null hypothesis (CMB rest frame) and the alternate hypothesis (peculiar velocity’s FOTO signal). Different
conventions for defining the distance between the peaks of the likelihood ratio distributions lead to different
choices for the top-performing multipole combination. The solid and dashed frames represent the highest and
lowest signal-to-noise achieved within each convention.

of constraints on model parameter. A common practice for performing such inference, not just
in cosmology but across sciences in general, is to employ the Bayesian framework of conditional
probabilities (Toussaint, 2011).

Bayesian formalism, broadly speaking, prescribes a grammar for quantifying how prior beliefs
concerning a claim must be updated in light of some evidence. In Bayesian formalism, one speaks
of the constraining power of a given data likelihood P(𝒅 | 𝜽) to describe how much it can shift
and squeeze the a priori probability distribution P(𝜽) over a parameter space into an a posteriori
distribution P(𝜽 | 𝒅) over the same parameter space. Assuming gaussian errors, the data likelihood
can be computed as

P(𝒅 | 𝜽) ∝
exp

{
− 1

2 [𝒅 − 𝒎(𝜽)]𝑇𝑪−1 [𝒅 − 𝒎(𝜽)]
}

(2𝜋)𝑛/2√det𝑪
(3.5)

where 𝒅 is a n-dimensional data vector, 𝒎 is a model dependent on a set of parameters 𝜽 and 𝑪 is the
covariance matrix. For our likelihood calculation, we use 𝒅 ≡ 𝑃O − 𝑃̄G as our data vector and the
covariance matrix is CO . The reason for this choice, as described earlier, is that in practice we can
only ever observe the data vector for O type catalogs. We do not have empirical access to what the
large scale structure would look like if some of the relativistic effects were ‘turned off’. To use the
higher multipoles of the power spectrum for inference, we simply concatenate the various multipoles
into a single one-dimensional data vector and use that to compute the likelihood.
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The likelihood, posterior and prior distributions are related to each other via the Bayesian formula
of conditional probabilities

P(𝜽 | 𝒅) = P(𝒅 | 𝜽)P(𝜽)
P(𝒅) (3.6)

were P(𝒅) can be ignored because it is a normalization factor common across all choices of parameters
and can be easily marginalized over.

To compute the posterior distribution, we must integrate the likelihood over the relevant span of the
parameter space. In practice, however, integrating over the parameter space can become extremely
resource demanding (especially for high dimensional parameter spaces). Thus, a standard optimization
technique is to efficiently sample points from those regions of the parameter space which contribute
the most to the posterior. To do so, an array of Monte-Carlo walkers can be setup to explore the
parameter space stochastically but nudged by an underling Markov chain process that rewards steps in
directions that improve the fit (Brooks et al., 2011). In our analysis, we use a library called emcee4

(Foreman-Mackey et al., 2013) for handling the Monte Carlo Markov Chains (MCMC) and it is based
on a family of MCMC methods invariant under affine transformations (Goodman and Weare, 2010).

The choice of priors can often become a contentious topic but, insofar as it can be shown that
reasonable changes to priors leave the posterior undisturbed, the prior distribution does not matter
much. Nevertheless, numerical simulations of ΛCDM show that dark matter halos with fixed mass
and local environment densities follow a Maxwellian velocity distribution(Dam, G. F. Lewis and
Brewer, 2023; Sheth and Diaferio, 2001),

P(𝑣⊙) =
√︂

2
𝜋

𝑣
2
⊙

𝜎
3 exp

(
−

𝑣
2
⊙

2𝜎2

)
, (3.7)

here we set 𝜎 = 300 km s−1. For velocity inference using the FOTO signal, in our testing we found
that choosing a different value of 𝜎 or an even less informative (or less prejudiced) uniform prior
distribution induces not much of a difference in the posterior (see Appendix B of (Elkhashab, Porciani
and Bertacca, 2024)). This suggests that the posterior is dominated by the data likelihood and priors
contribute only a minimal amount.

Fig. 3.6 show the posterior distribution calculated for FOTO measurements for one realization using
just the monopole, only even multipoles, only odd multipoles and all multipoles combined (using 12
data-points per multipole). It clearly shows that the fiducial velocity used to generate the mocks lies
within the 68-percentile region in all the four cases. Furthermore, a shrinkage in the Highest Posterior
Density Interval (HPDI) can be observed when information from higher multipoles is also utilized.

The posterior distributions displayed in Fig. 3.6 can demonstrate a sensitivity to the FOTO signal
of the specific realizations. The shaded region in Fig. 3.2 illustrates that the FOTO signal can
have a noticeable scatter around the model prediction and, hence, the velocity inference too would
reflect the down-stream effects of this scatter. To ensure that the HPDI shown in Fig. 3.6 is neither
intentional cherry-picking nor an unlikely fluke, we perform the MCMC analysis for each one of
our 125 realizations. The results of this exercise are shown as bar plots in Fig. 3.7, where the star
represents the median of one MCMC chain and the error bars are 1𝜎 intervals. The horizontal
line represents the fiducial observer velocity used to generate the mocks and the histograms on the
right column display the scatter of our posterior maximizing parameter inference across different

4 See emcee docs: emcee.readthedocs.io/
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3.1 Comparing FOTO Measurements

Figure 3.6: Comparing the posterior distributions for a single realization inferred using likelihood with only
monopole, only even multipoles, only odd multipoles and all multipoles of the FOTO signal. Shaded regions
represent the 68% confidence intervals. Colored vertical lines represent the median velocity of the corresponding
distribution and the gray dashed line represents the fiducial velocity. A generalization of these results across all
realizations is shown in Fig. 3.7.

realizations. If we average the HPDI intervals across all realizations to get an estimate of the mean
uncertainty on our measurements, we find that Δ̄HPDI ℓ=0 = 63.6 and Δ̄HPDI ℓ=0,1,2,3 = 49.5. This
suggests ≈ 28.5% tighter constraints on velocity while using all multipoles as opposed to monopole
only. The standard deviation of the histograms on the right column of Fig. 3.8 are in approximate
agreement with the average HPDIs, confirming that the uncertainties are not substantially under or
over-estimated. Furthermore, the bias ( 𝑋̄ − 𝑋)/𝜎 remains less than 0.05 in all four cases as well.

Finite Sample Correction to Covariance

Although these results represented by the dotted curves in Fig. 3.8 appear promising, they do not
account for an important statistical fact. While estimating the covariance matrix 𝐶 from 𝑁 realizations
of a data vector of length 𝑝, the covariance follows a Wishart Distribution (a generalization of Γ
distribution to multiple dimensions) (Wishart, 1928; Bekker, Niekerk and Arashi, 2017). When
working with a small number of samples, the inverse covariance matrix (called the ‘precision matrix’)
and, consequently, the likelihood of the evidence can become highly biased. The expectation value of
the inverse covariance ⟨𝐶−1⟩ deviates from the true precision matrix Σ and instead becomes (Hartlap,
Simon and Schneider, 2007)

⟨𝐶−1⟩ = 𝑁 − 𝑝 − 2
𝑁 − 1

Σ
−1 ≡ 𝛼ℎ Σ

−1
. (3.8)

To de-bias this estimate we apply a finite-sample correction to the inverse covariance. While this
statistical fact has been known for a few decades (Tam, 1985), cosmologists often call this the ‘Hartlap
correction’ in reference to Hartlap, Simon and Schneider, 2007 who argued for its relevance in
cosmological parameter estimation.

59



Chapter 3 Results

Figure 3.7: Posteriors for 𝑣⊙ in 𝑧 ∈ (0.9, 1.8) for monopole, even, odd, and all multipoles (12 bins per multipole
with 𝛿𝑘 = 0.34 × 10−3

ℎMpc−1). Horizontal lines represent the fiducial 𝑣⊙ . Average half-width highest
posterior density intervals are Δ̄HPDIℓ=0 = 63.6 and Δ̄HPDIℓ=0,1,2,3 = 49.5. Histograms in the right columns
represent the scatter of median velocity in the MCMC chains across realizations.
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Figure 3.8: Effect of number of bins considered (per multipole; 𝛿𝑘 = 0.346× 10−3 h/Mpc) on the half-width of
the HPDI with (solid) and without (dashed) applying finite-sample correction to the covariance during inference
of 𝑣⊙ . The different line colors depict inference results using different sets of power spectra multipoles. Without
the Hartlap correction, preparing data vectors with concatenated multipoles can provide up to 30% tighter
constraints on velocity. The correction inflates confidence intervals and the advantage in using longer data
vectors is substantially subdued.

This multiplicative correction remains close to 1 when 𝑁 >> 𝑝, such as when considering 12
bins of the monopole (1 − 𝛼ℎ ≈ 11%). However, when we include the higher multipoles the length
of the data vector becomes five times larger and the correction factor shrinks considerably (for
12 bins ×5 multipoles, 1−𝛼ℎ ≈ 50%). Thus, the data vector of concatenated multipoles is ‘punished’
by the finite-sample correction for its length and the constraining power competes against this penalty.
This is seen in the solid lines of Fig. 3.8 which remain generally above the dashed lines in the top
panel (representing wider HPDI) and below the dashed lines in the bottom panel (representing lower
fractional gains).

To lessen the impact of the Hartlap correction, one can investigate what might happen if the
covariance matrix is estimated with a much greater number of realizations (effectively, making
the finite sample correction smaller). For instance, if we had 1250 realizations then the finite
sample correction would only differ by ≈ 3% on using 12 bins per multipoles in monopole-only
and all-multipoles case. Consistent with this, in the Hartlap corrected case, we find that even
though the average HPDI sees no noticeable gain, the scatter of the best-fit 𝑣⊙ across mocks is much
tighter when additional multipoles are included. In fact, Fig. 3.9 shows that the scatter drops from
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𝜎ℓ=0 = 57.6 km s−1 to 𝜎ℓ=0,1,2,3,4 = 44.6 km s−1 (an approximately 20% improvement). This suggests
that the Hartlap-corrected error bars are over-estimated (and, possibly, over-cautious). However, there
is no guarantee that reducing the Hartlap factor would lead to substantially higher gains. Instead, the
gain depends on the physics and statistics of the extra multipoles and whether they carry independent
information rather than correlated noise. Moreover, generating hundreds of relativistically correct
mock skies could be highly resource intensive5 The alternative strategy to recover potential benefits in
using higher multipoles of FOTO could be to compress information into shorter data vectors. Such a
compression can be attempted at varying levels of sophistication.

Figure 3.9: Distribution of best-fit 𝑣⊙ over 125 mocks using Hartlap-corrected covariances for Bayesian inference.
The scatter of best fits tightens from 𝜎 = 57.6 km s−1 to 𝜎 = 44.6 km s−1 (≈ 23% reduction), hinting at extra
information in higher multipoles. However, the average 68% HPDI does not shrink case due to a higher
finite-sample correction to the precision matrix (see Fig. 3.8), motivating compression.

Re-Binning to Broader Bandwidths

The simplest strategy to compress data and lessen the impact of Hartlap correction is to re-bin
the data into fewer points containing wider band-powers. In doing so, adjacent elements that
carry highly correlated information collapse into one number. For instance, instead of one bin
representing a power spectrum interval over 𝛿𝑘 = 0.34 × 10−3

ℎMpc−1, we generate wider bins6

of 𝛿𝑘 = 1.14 × 10−3
ℎMpc−1. With this binning, we can span a similar range of approximately

𝑘 ∈ (0.35 × 10−3
, 4.00 × 10−3) ℎMpc−1 in six bins instead of twelve. Fig. 3.11 illustrates the

correlation matrix for the data vector 𝑃O before and after re-binning the power into wider bands. It
shows that re-binning into wider bins can effectively compress highly correlated nearby points into a

5 Although, the presence of a large suite of such mock skies (assuming an appropriate runtime configuration) can be mined
for various studies of linear order relativistic effects. There is, thus, at least some argument justifying this resource
consumption.

6 The re-binning transformation is, essentially, an average weighted with the number modes in an interval.
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single bin but the correlations across multipoles (which manifest as off-diagonal banded structures in
the left panel of Fig. 3.11) still survive after re-binning. To further eliminate these correlations would
require more careful compression techniques which will discuss later in §3.1.2.

Figure 3.10: This figure compares the average half-width HPDI for Hartlap-corrected inference chains before
(left) and after (right) re-binning to wider bandwidths. Looking at the bottom panels, one notices that
by re-binning, the competing influences of higher multipoles and precision matrix debiasing can be neatly
disentangled. The curves in bottom right column stay consistently above zero (reaching almost 12.5%) indicating
a clear (albeit small) advantage in using higher multipoles. However, the top panels reveal that this relative gain
arises not because re-binning genuinely shrinks the HPDI but because the signal in the monopole is washed out
and it’s constraining power is diluted.

Fig. 3.10 shows a ≈ 12.5% fractional gain in the re-binned data vector (in the optimal case of
using all multipoles and 4 bins per multipole) clearly wins over the finite-sample penalty. However,
re-binning coarse grains the resolution and the oscillatory features can get partially washed out. In the
monopole, for example, the second peak’s small amplitude is averaged with neighboring noisy bins,
weakening its constraining power. As a consequence of this, the constraining power of the monopole
goes down and the half-width HPDI widens to over 70 km s−1. When we compare HPDI across
the best-case configurations of two bandwidths (narrow: 6 bins/multipole using even multipoles;
broad: 2 bins/multipole using all multipoles), the minimum HPDI is similar ≈ 65 km s−1. This is
partly explained by the fact that re-binning reduces the data dimension but leaves significant cross-ℓ
correlations, so the extra bins do not translate into additional independent information (see off-diagonal
banded structures in right panel of Fig. 3.11).
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Figure 3.11: Heatmap illustrating the magnitude of terms in the correlation matrix for power spectra multipoles of
O. The left and right panels compare the correlations before and after re-binning from 𝛿𝑘 = 0.34×10−3

ℎMpc−1

to 𝛿𝑘 = 1.14 × 10−3
ℎMpc−1. Even after re-binning, the cross-multipole correlations survive (as seen in the

off-diagonal banded structures on the left) and eliminating these require different compression techniques.

Projection on principal components

Since re-binning did not yield genuinely tighter posteriors, we now turn towards more sophisticated
compression algorithms that transform the data into a small set of uncorrelated modes and retains
essential information while keeping the effective dimensionality of the data (and therefore the Hartlap
penalty) small. Looking at Fig. 3.11, one can notice that the amplitudes of a large fraction of bins
move coherently and are, hence, correlated. If we could identify the correct representation of this
quantity that drives similar changes in the amplitude across power spectrum multipoles, we would be
able to leverage that representation to compress very effectively. One common method for identifying
the hierarchy of relevance ranked features in the data is to perform a principal components analysis
(which is closely related to, or is otherwise called, Singular Value Decomposition (G. W. Stewart,
1992) or Karhunen-Loeve Transform (Tegmark, Taylor and A. Heavens, 1997)). It can be shown that
the directions in a high dimensional space which maximizes the projections of a distribution are simply
the eigenvectors of its covariance matrix. These eigen-vectors, also called principal components,
are associated with their respective eigenvalues 𝜆 (not to be confused with the likelihood ratio from
earlier) that represent the relative contribution to the total covariance. For 𝑝 dimensional data, the
symmetric covariance matrix has 𝑝 × 𝑝 entries and 𝑝 eigenvectors.

Fig. 3.12 represents the eigen decomposition of the two covariance matrices – 𝐶O and 𝐶G . First,
we note that in eigenvalues of in the covariance of the FOTO signal drops sharply beyond the first few
points. This explains the strong correlations and low gain in constraining power with additional bins.
If we consider all bins across all multipoles and project the distribution along the eigenvectors of 𝐶,
we will find that using only three of the most important directions would suffice to approximate the
total covariance faithfully up to 95% of its original magnitude (see the red curves in the right column
of Fig. 3.12). Data compression with PCA, therefore, can help us in avoiding high finite-sample
corrections due to the dimensionality of the data vector. Thus, we can confidently report that the most
gain which including higher multipoles can provide against the best constraint using monopole only,
in our testing, was found to be less than 5%.
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Figure 3.12: Eigenvalue spectra (top) and cumulative variance (bottom) for covariance of power spectra
measurements of O and G. The left and right columns compare the cases of considering only monopole against
considering higher multipoles before performing PCA. In both cases, the spectra falls sharply in the presence of
FOTO signal and most of the covariance can be reconstructed with projections along only a few eigenvectors.

A summary of the findings related to Bayesian inference of velocity inference is presented in Table.
3.1. There are other compression methods that can out-perform PCA (such as MOPED) but, given
our current results, we may not expect drastic improvements from the higher multipoles by switching
to a different compression scheme. Instead, we now focus our attention to investigating the origin
and implications of the fact that our estimate of the covariance of power spectrum, over a certain
bandwidth with all relativistic effects included, can be very well approximated by a very low-rank
tensor.

3.2 Discussion

In this section, we discuss the reason behind why the FOTO signal can be compressed into very few
PCA bins and the related question of why the various multipole orders of the FOTO signal carry
largely redundant information. To do so, we consider the multipole expansion of a different summary
statistic for capturing the relativistic distortion due to the observer velocity effect. Under the full-sky
assumption, if we compute the angular power spectrum 𝐶ℓ of the difference between the overdensity
fields for an observer at rest in the CMB frame (i.e. G type mocks) and an observer moving with our
peculiar velocity (i.e. O type mocks), we find that the field displays a clear planar symmetry aligned
with the dipole of the observer velocity. Fig. 3.13(a) is an illustration of the planar symmetry in
the difference between the two aforementioned overdensity fields (for the same configurations as the
bottom right panel of Fig. 3.13(a)).

Euclid Collaboration et al. (2025) estimate the angular power spectrum of this field using the same
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Table 3.1: Summary of inference results and their sensitivity to binning and compression choices. The average
half-width HPDI are reported for the best configurations found for each case. The last column reports the
relative gain in constraining power of a particular combination of multipoles over the posteriors inferred using
the monopole only.

Case ℓ
Bins Statistics [km/s] Gain %

𝑁bins 𝛿𝑘 ( ℎMpc−1) 𝑣̂⊙ HPDI/2 𝜎

No Hartlap 0 11 0.3 × 10−3 369.0 62.8 57.6 -
2, 4 11 0.3 × 10−3 369.3 60.7 55.3 3
1, 3 12 0.3 × 10−3 369.3 58.1 54.1 8
0, 1, 2, 3, 4 12 0.3 × 10−3 369.4 49.5 45.8 28

Hartlap-corrected 0 11 0.3 × 10−3 369.4 65.1 57.1 -
2, 4 6 0.3 × 10−3 369.6 63.6 55.8 2
1, 3 11 0.3 × 10−3 369.5 64.4 53.4 1
0, 1, 2, 3, 4 4 0.3 × 10−3 369.2 64.2 53.0 1

PCA-compressed 0 6 0.3 × 10−3 369.1 62.4 64.8 -
2, 4 5 0.3 × 10−3 369.4 62.1 57.1 0
1, 3 3 0.3 × 10−3 369.4 62.1 57.5 0
0, 1, 2, 3, 4 5 0.3 × 10−3 368.9 61.6 58.1 1

survey functions utilized in this project and with a similar application of LIGER method that this
study employed. Fig. 3.13(b) has been reproduced from their study and it demonstrates how all of the
overdensity difference that drives the amplitude of the FOTO signal in the 1D power spectrum can be
encapsulated in a single multipole order of the angular power spectrum i.e the angular dipole 𝐶ℓ=1. It
is clear from Fig. 3.13(b) that performing velocity inference using higher orders of 𝐶ℓ ≥ 1 would not
lead to a substantial increase in the constraining power of the signal because the signal resides only in
one of the multipole expansion orders.

In measuring the observer velocity effect using the 1D matter power spectrum, we project a distortion
of the density field that is naturally suited for a spherical geometry based statistic onto a cartesian basis.
It is for this reason that a complete representation of the effect becomes more complicated, requiring
several terms of the multipole expansion with similar amplitudes. However, at a fundamental level, it
is the same signal from the dipole of the angular power spectrum that drives the FOTO oscillations
through the projections on various spherical Bessel integrals. In other words, the amplitude of
oscillations across 𝑘-bins and multipole orders moved coherently (either as strong correlations or
anti-correlations) because all those data points were largely determined by the strength of the signal in
a single term of the angular power spectrum.

To confirm that this result about effective compression into a few bins is not Euclid specific, we
computed the principal components and their relative important for SKA-like mocks as well. Since
the number density of tracers for SKA-like mocks is orders of magnitude higher, it takes substantially
more memory and time to perform the CIC interpolation before estimating the power spectrum. Thus,
we only analysed the principal components of the FOTO multipoles for tomographic redshift bins of
SKA-like mocks (as shown in Fig. 3.1). The results of this exercise validate our observation because,
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for SKA-like mocks too, more than 95% of the covariance can be approximated by a small number
of principal components (as shown in Table. 3.2). The only notable exception is the last redshift
bin (0.8, 1.0) which seems to require more PCA modes than other bins. However, this can be easily
explained by the fact that the FOTO signal itself vanishes in the last bin and, thus, PCA analyses
only captures modes of noise-like directions. This also highlights an important limitation of PCA by
showing that the principal components are only optimized for capturing most of the covariance and
not necessarily prioritizing those features of the data that contain the highest SNR.

Table 3.2: A summary of the number of principal components required to capture 95% of the covariance across
tomographic redshift bins of SKA-like mocks.

Redshift bin Modes containing 95% covariance

ℓ = 0 ℓ = 0, 1, 2, 3, 4

(0.1, 0.2) 1 1
(0.2, 0.4) 2 2
(0.4, 0.6) 1 2
(0.8, 1.0) 4 6

An upshot of this work has been to show that although the 1D power spectrum is not the tool that is
the most naturally suited (geometrically speaking) for measuring anisotropies on the celestial sphere,
leading to various non-zero terms in the multipole expansion required for a faithful representation of
the planar symmetry, individual terms of the expansion can independently carry most of the signal’s
constraining power. Consequently, if we extend our work to a thousand or more mocks in the future,
by restricting ourselves to lower order multipoles we can place similar sized constraints that we get
using higher multipoles, while having to perform tens of thousands of fewer FFTs in the process. This
is possible because the results of our investigation into the higher multipoles have established that the
FOTO signal is a low-rank quantity and an early truncation of the multipole expansion can carry a
large fraction of the signal’s constraining power.

3.3 Outlook

3.3.1 Anisotropic Cosmological Models

A statistically significant misalignment between the CMB and matter dipoles would point either to
unaccounted systematics or to new cosmological physics. Having discussed the concrete and scrutable
statistics, for the sake of completeness, we shall now make a brief interlude to review some theoretical
perspectives on the issue of cosmic anisotropies. For the purposes of this section, then, let us suppose
that future observations contain a reluctant dipole anomaly which refuses to yield to systematic
corrections. There already exists an entire landscape of theoretical models designed to accommodate
such a deviation between early- and late-universe dipoles.

If the early and late universe dipoles are misaligned, then there could be at least three possible
categories of resolutions — modifying symmetries at the FLRW metric’s level, introducing bulk
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(a) (b)

Figure 3.13: (Left) Relativistic distortion to a slice of overdensity field contributed by the observer velocity
term. In 2D, the gradient demonstrates a planar symmetry that is a projection of a dipole in the angular power
spectrum. See the caption of Fig. 3.13(a) for details on the production of this illustration. (Right) Figure
reproduced from Euclid Collaboration et al. (2025) showing angular power spectrum measurement of the FOTO
signal’s contribution to the overdensity field in a Euclid-like survey. In the 𝐶ℓ representation, we find that the
entire signal resides in the dipole term for full-sky and only leaks into higher multipoles when convoluted with
a window function.

matter flow through primordial perturbations or decoupling rest frames of matter and radiation7. In
fact within each of these parent categories, there can be two different kinds of models – ones with a
fixed anisotropy and others with a dynamically evolving one. For the second class of models, one can
show via dynamical systems view of cosmology, that even highly anisotropic cosmological models
can show local and transient patches of high degrees of isotropization.

The first family of theories where the kinematic interpretation of the CMB dipole may not suffice
could be universes with anisotropic expansion i.e. cosmological models where the spacetime expansion
rates differ with directions. A well-studied example of this kind would be a Bianchi type universe.
Such models remain highly popular among physicists because their symmetries allow a reduction
of the Einstein Field Equations from PDEs to ODEs, making analytic investigations more tractable.
However, among cosmologists, it is widely considered that non-zero anisotropic shear is ruled out
by constraints from Planck data (Pontzen, 2016). For instance, analysis by Saadeh et al. (2016)
shows that anisotropic expansion is strongly disfavored by CMB data at the odds of 121,000:1. As
mentioned earlier, however, Bianchi type universes can isotropize (Wainwright et al., 1998; Coley,
2003) such they can resemble FLRW-like symmetries locally. De et al. (2022) show one such
mechanism of isotropization for the case of locally rotationally symmetric Bianchi Type-I universes in
an 𝑓 (𝑄) extension of symmetric teleparallel gravity (i.e. gravity based on coupling non-metricity
with stress-energy momentum, as opposed to curvature). In contrast to mechanisms for isotropization,
there are als mechanisms for generating anisotropies. Consider, for example, Campanelli (2009)

7 Arguably, the boundaries between these ‘types’ of theoretical modifications are not completely rigid (in that any one of
them may also insinuate another)
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who provide a model for anisotropization by showing how a particular kind of Lorentz invariance
violation can cause super-adiabatic fluctuations of magnetic field that can possess planar symmetry on
cosmological scales.

Another way a misalignment may originate could be through a coherent bulk flow of matter in the
CMB frame. The simplest explanation along these lines could be the existence of super-structures
farther away than the Great Attractor. Existence of such super-structures is contingent on having the
right seeds for structure formation. Turner (1991) claim that if inflation lasted ≈ 10 e-folds longer
than needed to solve the horizon problem, then the pre-inflationary super-Hubble perturbations could
create dipole-anisotropies that ‘give the illusion of a tilted universe’ (Turner, 1991). Later studies of
tilted universe proposals have determined that only isocurvature modes of super-horizon perturbations
can induce a leading-order intrinsic dipole in the CMB (Domènech et al., 2022; Erickcek, 2008). A
mechanism suggested to generate a spectral continuum of such super-horizon isocurvature perturbations
is via the Axion model of cold dark matter (Adams et al., 2023). Axions are hypothetical particles
which were, originally, introduced to resolve the strong CP problem of quantum chromodynamics.
These particles are generated by the spontaneous breaking of Peccei-Quinn symmetry and, if they
are generated during the inflationary epoch, they can induce large isocurvature perturbation modes
(Erickcek, 2008).

Finally, a third class of explanations for a misalignment between early and late universe dipoles
could be that radiation and matter no longer share a co-moving rest frame. This, however, raises
the question that if matter and radiation were strongly coupled in the early universe, how come their
rest-frames have acquired a relative velocity with respect to each other now. Jimenez and Maroto
(2009) propose that this can be achieved if dark energy was moving with respect to primordial plasma
in the early universe. They argue that if dark energy is modeled as a perfect fluid which has always
remained uncoupled from matter and radiation contents of the universe, then there is no a priori
justification for assuming that DE shares the same rest frame as the other two. If one accepts this,
then the relative dark energy velocity 𝑣 DE would have to be treated as an independent cosmological
parameter on the same footing as Ωm or 𝑤 DE (Jimenez and Maroto, 2009).

3.3.2 Challenges and Prospects

In this work, we introduced a power-spectrum based method to measure an observer’s peculiar velocity
using the FOTO signal. Then, we demonstrated the possible improvements in the constraining power
of the FOTO signal in Bayesian inferences of peculiar velocity. We computed the posterior HPDI
in the case of a full-sky Euclid-like survey to be ±60 km s−1 . Although, in going from a full-sky
geometry to a survey with a partial-sky coverage (and/or a galaxy mask), the Signal-to-Noise would
be expected to drop (as shown in the case of monopole by Elkhashab, Porciani and Bertacca, 2024).
Partial sky masks lead to a leakage from the dipole of the angular power spectrum to higher multipoles
due to a convolution with the window function. When the signal starts looking more complicated in
the angular geometry based statistics (i.e. its most natural representation), then the question of higher
multipoles of 1D power spectrum become relevant again. This is because the different orders of 𝐶ℓ
may couple with different orders of 𝑃ℓ in non-trivial ways. The study of partial sky masks will require
accounting for mode-mixing of higher multipoles and deriving new analytical results. Doing so is left
for future work.

Besides the impact of sky-fraction on the FOTO signal, another large systematic that was idealized
in our work were the uncertainties on survey functions. Determining these survey functions is a
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Figure 3.14: Figure reproduced from (Elkhashab, Porciani and Bertacca, 2024) summarizing the variation of
signal-to-noise for FOTO monopole-only measurements in H𝛼 widest bin with respect to sky coverage fraction.
The red-cross is indicative of a realistic Euclid-like survey footprint with approximately one-third sky fraction.
The impact of partial sky-coverage on inference with higher-multipoles remains to be seen.

difficult task. Instead, the impact of uncertainties in survey functions can be incorporated together as
errors in the determination of 𝛼. Elkhashab, Porciani and Bertacca, 2024 report (for monopole only
inference) that assuming (1%, 10%) errors on 𝛼 results in widening the HPDI to Δ̄𝑣 = (62, 71) km s−1.
According to Wang, 2024, the measurements of Q and E in eBOSS suggests that 𝛼𝑜 for H𝛼 surveys
can be determined to 2% precision.

Elkhashab, Porciani and Bertacca (2024) also present a transformation for boosting the signal-to-
noise of the FOTO effect and getting tighter constraints from the same mock skies. The core principle
behind the Boosted-Finger of the Observer (B-FOTO) effect is that we choose an arbitrary velocity
vector 𝒗𝐵 and transform the redshifts of all galaxies to the rest frame of a fictitious observer moving
with the peculiar velocity of 𝒗𝐵 + 𝒗⊙. On doing so, and accounting for the boosts appropriately in
our theoretical models, we will find that the mismatch between the radial and angular relativistic
effects further exaggerates the amplitudes of the FOTO fluctuations. Using the B-FOTO signal,
Elkhashab, Porciani and Bertacca (2024) report constraints as low as 39 km s−1 for full-sky, widest-bin,
Euclid-like measurements. Furthermore, the B-FOTO signal also enables us to measure the direction
of the dipole due to a dot-product between 𝒗𝐵 and 𝒗⊙ that appears in the analytic model. For our
purposes, it is important to highlight that our claims concerning the higher multipole structure of
the FOTO signal cannot be extrapolated to the multipoles of the B-FOTO effect. The nature of the
overdensity field that determines the B-FOTO signal is sufficiently distinct from the nature of the
overdensities that drive the FOTO signal. Therefore, another open problem left for future work is the
following. Do higher multipoles of B-FOTO contain uncorrelated information or are they, too, like in
the case of FOTO, largely redundant for estimating velocity constraints. Fig. 3.15 illustrates how
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potential measurement of the FOTO signal and the B-FOTO signal could compare against the other
techniques for measuring peculiar velocity8.

Figure 3.15: A recreation of Fig. 1.1 to highlight the potential constraining power of the PCA compressed
multipoles of the FOTO signal (for one specific realization). An important caveat in this comparison is that
other measurements come from partial sky footprints and the FOTO projections are presented assuming full-sky
coverage. Applying realistic survey masks would lead to a drop in the FOTO amplitude as shown in Fig. 3.14.
Measurements are quoted from Darling (2022), Dam, G. F. Lewis and Brewer (2023), P. d. S. Ferreira and
Marra (2024), Mittal, Oayda and G. F. Lewis (2023), Tiwari et al. (2024) and Planck Collaboration et al. (2020).
Gaussian errors are assumed for ease of illustration.

In our entire discussion, we have assumed a cosmology and tried to measure the dipole velocity.
We could also, instead, fix the dipole magnitude and try to determine the cosmology. In particular,
the FOTO signal is sensitive to the structure formation history and, hence, carries information about
the matter density parameter Ωm and the dark-energy equation of state. Elkhashab, Porciani and
Bertacca (2024) demonstrate the feasibility of putting constraints on Ωm using inferences from the
FOTO signal. While these constraints may appear competitive at face value compared to other ways of
estimating the density parameter (Schindler, 2002), it is important to remember that these have been
computed assuming highly idealized settings (full-sky survey, perfect knowledge of survey functions,
etc.). Extracting information about dark energy EOS is an even more futuristic goal and requires
further more optimistic scenarios (because constraining the DE EOS tends to involve more number of
parameters).

Further prospects of future work could involve trying to apply the FOTO technique on observations
by the DESI collaboration, which is soon going to announce its third data-release. Doing so would
8 Note that the comparison is only illustrative because all the catalogs use partial skies and the FOTO-related work makes

full-sky assumption.
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require further careful study of the systematics specific to the survey. On the computational side,
LIGER could be modified to account for wide-angle effects which become prominent on the same
scales as the relativistic effects. Finally, extending LIGER’s computations to beyond the first order in
perturbation theory would also enable us to capture relativistic effects on higher-order statistics like
the cosmic bi-spectrum and (its Fourier conjugate) 3-point correlation function (3PCF). It is now well
known that the modern surveys can carry high fidelity information about these higher order statistics
and their careful modeling would be essential towards fully utilizing this newly unlocked observational
prowess.

3.4 Summary

We now present a brief summary of the main findings of this study. We started with motivating a need
for a new measurement method for constraining our peculiar velocity in order to verify the kinematic
interpretation of the CMB dipole. More specifically, we presented a puzzling array of claims on
the compatibility between early- and late-universe dipoles which would benefit greatly from a novel
measurement technique that avoids the systematics affecting Ellis and Baldwin style measurements (i.e.
detecting a dipole in the number counts of flux-limited surveys). We then proposed using observer
velocity induced general relativistic redshift space distortions as a probe for peculiar velocity. In
particular, we computed the linear order corrections to the overdensity field in a perturbed FLRW
universe and interpreted the various terms as contributions from well-known relativistic effects, such
as the Kaiser effect, gravitational lensing, and integrated Sachs–Wolfe. Among these contributions, we
isolated the Finger-of-the-Observer (FOTO) effect which we showed to be a redshift space distortion
that depends on the square of the observer velocity and some survey dependent functions (number
density of tracers, linear bias, magnification bias and evolution bias).

Moving from modeling the overdensity field to estimators for two-point statistics, we computed the
effect of the observer velocity term on the multipoles of the 1D matter power spectrum. For a full-sky
geometry, using local plane-parallel (LPP) approximation, we derived the general form of the FOTO
effect represented as a multipole expansion using integrals of the spherical Bessel function as a basis
and the Wigner-3j matrix to impose selection rules. We also showed the particular solutions for the
first five multipoles of the FOTO effect. To move beyond theoretical expectations, we implemented
a pipeline capable of generating mock skies containing the FOTO signal. Newtonian snapshots
at various moments of cosmological structure formation history were generated using CLASS and
MUSIC2, which were then stitched into relativistic light-cones using the LIGER method. Besides
detecting which objects of the simulation box lay on an observer’s past light-cone, LIGER also applies
linear-order metric perturbations computed using local terms as well as line-of-sight integrals. We
then performed baryon-painting by incorporating semi-analytic survey functions to model Euclid-
and SKA-like galaxy overdensity fields, thereby bridging theoretical predictions with observationally
relevant data. This forward-modeling step was crucial in allowing us to extract mock measurements of
the FOTO signal under controlled conditions.

Using PyPower’s implementation of the Yamamoto-Bianchi estimator, we measured the FOTO
signal across 125 realizations based on randomly generated seeds for structure formation. Across
tomographic redshift bins, we confirmed that the FOTO oscillations predicted by linear theory are
robustly recovered using the Yamamoto-Bianchi estimator in monopole as well as higher order
multipoles. We also found that the amplitude of the FOTO signal is sensitive to survey depth, with the
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widest-bin measurements for Euclid-like configurations yielding the strongest signal strength.
We then applied Bayesian inference, combining theoretical predictions with mock measurements in

order to constrain the observer’s peculiar velocity. Initially, these tests suggested that incorporating
higher multipoles beyond the monopole can shrink posterior widths by up to ≈ 30%. However, we
also showed that this apparent improvement is strongly diminished once finite-sample corrections to
the precision matrix (Hartlap correction) are applied. With our limited number of realizations (125),
lengthening the data vector by concatenating higher multipoles substantially inflated the covariance
and erased the gain in constraining power that we observed earlier.

To mitigate this issue, we explored data compression techniques such as re-binning and principal
component analysis. Re-binning successfully reduced redundant correlations in the data vector and
allowed modest shrinkage in HPDI using multipole information. In practice, however, the improvement
stemmed from degrading the monopole signal rather than multipoles providing genuinely tighter
constraints. PCA offered a more systematic route to compression and its implementation revealed that
upwards of 95% of the covariance across the 𝑘-bins and multipole orders of the FOTO signal could
be compressed into 3 of the most significant principal components. This indicated that the FOTO
signal is a low-rank effect which can be efficiently compressed because the fluctuations across the
data-points show strong correlations (or anti-correlations) and carry redundant information.

To explain the origin of these correlations, we referred to the angular power spectrum of the observer
velocity distortion to the overdensity field. We highlighted that, in the spherical geometry FOTO
effect manifests as a non-zero contribution exclusively to the dipole 𝐶ℓ=1 but projecting this anisotropy
of the celestial sphere on a cartesian basis leads to the many non-zero terms in the multipole expansion
of the 1D power spectrum. The strong correlations across FOTO multipoles were traced back to their
amplitudes being driven by a single mode of the angular power-spectrum.

As the most natural extensions of this study, we proposed investigating the effects of partial sky
masks (i.e. emulating realistic survey footprints) on the constraining power of FOTO multipoles.
We also proposed extending the study of higher order multipoles to the Boosted FOTO method, as
the nature of the overdensity distortions driving B-FOTO amplitude could vary in non-trivial ways
compared to the overdensity distortions that underlie the standard FOTO method.

In conclusion, this work answers a hitherto open question – what is the role of higher order
multipoles of the FOTO signal in providing velocity constraints? The answer we provide is that
future work employing the FOTO technique can confidently truncate their multipole expansions
because the lower order terms can carry most of the constraining power that one recovers by gathering
combinations with higher order terms. More importantly we highlight that, even though the 1D matter
power spectrum is not the most geometrically simplified description of dipole anisotropies on celestial
sphere, Finger-of-the-Observer effect can provide useful constraints on our peculiar velocity in the
future and it remains a highly promising probe for understanding the deviation from ideal Hubble flow
exhibited by the slow march our cosmic neighborhood.
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